Физика невозможного (Каку) - страница 238

• Некоторые физики допускают, что сила Большого взрыва могла разогнать какую-нибудь крошечную суперструну до поистине космических масштабов. Физик Александр Виленкин из Университета Тафтса пишет: «Одна очень интересная возможность заключается в том, что суперструны… могут достигать астрономических масштабов… В этом случае мы могли бы пронаблюдать их в небе и таким образом напрямую проверить теорию суперструн». (Вероятность найти в космосе гигантскую реликтовую суперструну, сохранившуюся с момента Большого взрыва, очень мала.)

О неполноте физики

В 1980 г. Стивен Хокинг вновь разжег интерес к теории всего; он прочел лекцию под названием «Близится ли конец теоретической физики?», в которой сказал: «Возможно, мы увидим полную теорию еще при жизни некоторых из присутствующих здесь». Он утверждал, что с 50-процентной вероятностью полная и окончательная теория будет найдена в течение ближайших 20 лет. Но когда наступил 2000 г., а консенсуса по поводу теории всего по-прежнему не было, Хокинг изменил свое мнение и перенес ту же вероятность в 50 % на следующие 20 лет.

Затем в 2002 г. Хокинг еще раз передумал и заявил, что теорема Гёделя о неполноте, вполне возможно, указывает на принципиальную ошибку в его первоначальных рассуждениях. Он написал: «Некоторые люди будут очень разочарованы тем, что не существует окончательной теории, которую можно сформулировать в конечном числе пунктов. Я раньше тоже принадлежал к этому лагерю, но теперь изменил мнение… Теорема Гёделя гарантирует, что для математиков работа всегда останется. Я думаю, что М-теория сделает то же самое для физиков».

Его аргументы не новы: поскольку математика неполна, а языком физики является именно математика, в физике всегда будут существовать неподвластные нам истинные утверждения, а потому теории всего быть не может. Теорема о неполноте, убившая мечту греков о том, чтобы все истинные утверждения в математике были доказаны, сделает невозможным и создание теории всего.

Фримен Дайсон был более красноречив: «Гёдель доказал, что мир чистой математики неисчерпаем; никакое конечное число аксиом и логических правил не в состоянии охватить всю математику… Я надеюсь, что аналогичная ситуация существует и в мире физики. Если мой взгляд на будущее верен, то мир физики и астрономии тоже неисчерпаем; не важно, сколько пройдет времени, — мы всегда будем наблюдать новые явления и получать новую информацию; всегда будут появляться новые миры, которые можно исследовать, — постоянно расширяющиеся владения жизни, сознания и памяти».