Теория струн и скрытые измерения Вселенной (Яу, Надис) - страница 29

+ y>n = 1. При помощи декартовых координат решить это уравнение и нарисовать соответствующую кривую не составит труда. Однако до появления системы координат было непонятно, как ее изобразить. В местах, которые ранее считались непроходимыми, Декарт указал путь, по которому двигаться дальше.

Этот путь стал еще четче, когда через пятьдесят лет после Декарта Исаак Ньютон и Готфрид Лейбниц, разделяющие идеи Декарта в области аналитической геометрии, создали дифференциальное и интегральное исчисление. На протяжении десятилетий и столетий новые инструменты дифференциального и интегрального исчисления внедрялись в геометрию такими математиками, как Леонард Эйлер, Жозеф Лагранж, Гаспар Монж и, в первую очередь, Карл Фридрих Гаусс, под чьим руководством в 1820-х достигла своего совершеннолетия так называемая дифференциальная геометрия. Дифференциальная геометрия предполагает использование декартовой системы координат для описания поверхностей, которые затем могут быть детально проанализированы с помощью методов дифференциального исчисления; дифференцирование — это метод нахождения угла наклона любой гладкой кривой.

Создание дифференциальной геометрии, которая продолжила свое развитие и после Гаусса, стало величайшим достижением. С помощью инструментов дифференциального исчисления геометры описывали свойства кривых и поверхностей с намного большей точностью, чем это было возможно ранее. Подобные сведения можно получить путем дифференцирования или, что эквивалентно, путем нахождения производных, показывающих, как изменяется функция в ответ на изменение аргумента. Функцию можно рассматривать как алгоритм или формулу, в которой каждому числу, поданному на вход (значению аргумента), ставится в соответствие некоторое число на выходе (значение функции). Например, в функции y = x>2 значение аргумента x подается на вход, а на выходе получается значение функции y. Функция однозначна: если вы будете подставлять в нее одно и то же значение x, то всегда получите одно и то же значение y, так, в нашем примере, подставляя x = 2, вы всегда получите y = 4. Производная характеризует отношение приращения значения функции к заданному приращению аргумента; величина производной отражает чувствительность функции к незначительным изменениям аргумента.

Производная — это не только абстрактное понятие; это реальное число, которое можно вычислить и которое сообщает нам о наклоне кривой или поверхности в данной точке. Например, в приведенном выше примере можно найти производную функции (которая в данном случае оказывается параболой) в точке