Теория струн и скрытые измерения Вселенной (Яу, Надис) - страница 32

Гаусс также ввел понятие внутренней геометрии — идею, согласно которой объект или поверхность имеет свою собственную кривизну (так называемую гауссову кривизну), которая не зависит от того, как этот объект располагается в пространстве. Рассмотрим для примера лист бумаги. Можно ожидать, что его кривизна равна нулю, и так оно и есть. Теперь свернем этот лист бумаги в цилиндр. Двухмерная поверхность цилиндра, согласно Гауссу, имеет две главные кривизны, проходящие в направлениях, перпендикулярных друг другу: первая кривизна относится к окружности и имеет величину 1/r, где r — это радиус основания цилиндра. Если r = 1, то эта кривизна также равна единице. Вторая кривизна проходит вдоль образующей цилиндра, которая представляет собой прямую линию. Кривизна прямой линии, очевидно, равна нулю, поскольку прямая — она и есть прямая. Гауссова кривизна цилиндра, как любого другого двухмерного объекта, равна произведению одной кривизны на вторую, которое в нашем случае равно 1×0 = 0. Таким образом, в понятиях собственной кривизны цилиндр представляет собой то же самое, что и лист бумаги, из которого он свернут, — он совершенно плоский. Нулевая собственная кривизна цилиндра обусловлена тем, что цилиндр можно сделать из листа бумаги, не растягивая и не деформируя его. Иными словами, измерения расстояний между любыми двумя точками на поверхности листа — вне зависимости от того, разложен ли лист на столе или свернут в трубочку, — дадут одинаковые результаты. Это значит, что геометрия и, следовательно, собственная кривизна листа бумаги остаются неизменными вне зависимости от того, плоский этот лист или свернутый.

Аналогично, если бы удалось сделать из цилиндра тор, соединив его концы вместе — также без растяжений и деформаций, — то внутренняя кривизна полученного тора все равно осталась бы равной внутренней кривизне цилиндра, то есть нулю. На практике, однако, сделать так называемый плоский тор — по крайней мере в двух измерениях — невозможно по причинам, которые будут обсуждаться далее (в четвертой главе). Но теоретически подобный объект (называемый абстрактной поверхностью) изготовить можно, и он столь же важен для математики, как и те объекты, которые мы называем реальными.

Рис. 2.4. Тороидальная (имеющая форму бублика) поверхность может быть совершенно «плоской» (имеющей нулевую гауссову кривизну), поскольку ее можно изготовить, сворачивая лист бумаги в трубку или цилиндр и затем соединяя концы полученного цилиндра


С другой стороны, сфера довольно существенно отличается от цилиндра или плоского тора. Рассмотрим, к примеру, кривизну сферы радиуса