Теория струн и скрытые измерения Вселенной (Яу, Надис) - страница 37

Я сидел в аудитории, пытаясь сделать выводы из услышанного, и тут меня захлестнул поток мыслей. Я интересовался кривизной начиная с колледжа и чувствовал, как в свете открытий Эйнштейна кривизна может играть ключевую роль для понимания Вселенной и что именно в эту область исследований я могу однажды внести свой собственный вклад. Дифференциальная геометрия предоставляет средства для описания движения массы в искривленном пространстве-времени, не вскрывая при этом причины этого искривления. Эйнштейн, в свою очередь, при помощи тех же средств попытался объяснить, откуда берется искривление. Форма пространства как результат действия гравитации и форма пространства как следствие его кривизны, рассматривавшиеся ранее как две разные задачи, слились в единую проблему.

Затем я задался следующим вопросом: поскольку известно, что причиной возникновения гравитации является масса, задающая кривизну пространства, что можно сказать о форме пространства, называемого вакуумом, в котором какое-либо вещество полностью отсутствует? Что определяет кривизну пространства в этом случае? Говоря иными словами, имеют ли эйнштейновские уравнения гравитационного поля какое-либо еще решение в вакууме, кроме плоского, которое нас менее всего интересует: с пространственно-временным континуумом, в котором нет ни материи, ни гравитации, ни взаимодействий и совершенно ничего не происходит? Существует ли такое «нетривиальное» пространство, в котором отсутствует материя, но существует кривизна и силы гравитации?

Тогда я был еще не в состоянии ответить на эти вопросы. Не знал я и того, что ученый по имени Эудженио Калаби рассмотрел частный случай этой же проблемы более чем за пятнадцать лет до того, впрочем, исходя из чисто математических предпосылок и не касаясь ни гравитации, ни идей Эйнштейна. Единственное, что я тогда мог сделать, — это удивиться и задать вопрос: «А что, если бы?»

Рис. 2.5. Геометр Ч. Ш. Черн (фотография Джорджа М. Бергмана)


Это был весьма неожиданный для меня вопрос по многим причинам — особенно если учесть, с чего я начинал свой жизненный путь: следуя по пути, который должен был привести меня к торговле домашней птицей, в конце концов я пришел к геометрии, общей теории относительности и теории струн.

Я родился в 1949 году в континентальном Китае, через год после моего рождения семья переехала в Гонконг. Отец был университетским профессором, имеющим весьма скромное жалованье и жену с восемью детьми, которых нужно было как-то прокормить. Несмотря на то что ему приходилось преподавать сразу в трех университетах, его заработок был столь скуден, что нам едва хватало на еду. Мы росли в бедности, без электричества и водопроводной воды; ванной нам служила ближайшая река. Однако наше богатство состояло в другом. Будучи философом, отец побуждал меня воспринимать мир с более отвлеченной точки зрения. Помню, как маленьким ребенком, подслушивая беседы, которые он вел со студентами и коллегами, я чувствовал волнение, хотя не понимал точного значения многих слов.