Первоначально характер связывания аминокислот соответствующими им адапторами сохранялся таким же, как при примитивном синтезе: полость, образованная петлей РНК, конформационно соответствовала аминокислоте и удерживала ее в связанном положении. Впоследствии механизм связывания был изменен. Оно стало осуществляться при посредничестве белковых ферментов аминоацил-тРНК-синтетаз, подключающих аминокислоты к 3'-концевому аденозину соответствующего адаптора (тРНК). При этом изменилось назначение петлевой области в молекулах тРНК. Ее структура сохранила специфичность, но преобразовалась соответственно новому назначению — служить объектом узнавания для специфической аминоацил-тРНК-синтетазы.
Предлагаемая модель позволяет удовлетворительно объяснить происхождение ряда характерных особенностей современного генетического кода, в частности, появление “бессмысленных кодонов”, обрывающих синтез пептида на рибосоме. При синтезе белка по единой РНК-матрице их роль выполняли петли, которые вообще не связывали аминокислоту (Рис. 1А). Такие петли разделяли два пептида, образованные на единой РНК-матрице. В пуле разделившихся петель-адапторов “пустой” петлевой элемент не закрепился за ненадобностью, но соответствующий ему кодон сохранился в мРНК (Рис. 1Б).
В схемах Рис. 1, иллюстрирующих гипотезу возникновения современного способа кодирования белков, использован нынешний трехнуклеотидный (трехбуквенный) код. Однако на раннем этапе перехода к современному способу кодирования код, вероятно, был иным. Логично предположить, что число букв в нем было не три, а не менее чем семь-девять. Благодаря этому энергия комплементарного кодон-антикодонного взаимодействия могла обеспечить стабильность комплекса на время, необходимое для образования пептидной связи.
Большой размер раннего кодона мог также в отсутствие специального механизма обеспечивать соблюдение рамки считывания. При трехбуквенном коде все возможные 64 триплета задействованы, т. е. за исключением трех стоп-кодонов они могут быть узнаны соответствующими тРНК. Поэтому смещение рамки считывания в мРНК, кодирующей определенный пептид, на одну или две буквы не прерывало бы синтеза, но изменило бы последовательность кодонов, т. е. привело бы к появлению “неправильного” пептида. При современном синтезе белка на рибосомах осуществляется контроль начала считывания со стартового кодона, определяющего N-концевую аминокислоту и одновременно обозначающего начало рамки считывания. Однако трудно рассчитывать на то, что контроль соблюдения рамки считывания уже осуществлялся в ранних версиях современного способа кодирования. Роль контролирующего фактора в соблюдении рамки считывания могли сыграть большие размеры кодона. При семибуквенном коде и четырех узнаваемых элементах (азотистых основаниях) число возможных вариантов кодонов около 16 000. Очевидно, что число функционировавших РНК-адапторов и, соответственно, “осмысленных” (соответствовавших определенным аминокислотам) кодонов было многократно ниже. Абсолютное большинство потенциальных кодонов не имело адапторов. Поэтому вопрос об использовании “неправильной” рамки считывания вообще не стоял: существовала единственная рамка, обеспеченная адапторами на всем протяжении. В ней осуществлялся синтез запрограммированного пептида.