Распространенность жизни и уникальность разума? (Мосевицкий) - страница 58

Выше, говоря о горизонтальном переносе, мы имели в виду передачу отдельных признаков (генов). Такие переносы, постепенно накапливаясь, могли коренным образом преобразовать генетический аппарат и физиологию клетки. Было высказано предположение, что особенно эффективно они происходили при захвате и использовании одних клеток другими в качестве пищи. В частности, именно “пищевыми“ переносами Дулиттл объяснял присутствие большого числа бактериальных генов в хромосомах эукариотов (Doolittle, 1998).

Однако значение, которое невозможно переоценить, сыграла другая форма горизонтального переноса, когда объединялись в единый организм целые клетки.

5.3.1 Концепция формирования митохондрий и хлоропластов путем симбиоза бактериальной клетки и раннего эукариота

Около 2 млрд лет тому назад на Земле создалась критическая для дальнейшего развития жизни ситуация. Фотосинтезирующие бактерии, размножившись, стали производить все больше кислорода. Первоначально, пока на поверхности Земли было много чистых металлов, а в атмосфере присутствовали метан, сероводород и другие восстановленные соединения, практически весь кислород расходовался на их окисление. Однако к указанному сроку практически все выходившие на поверхность металлы были превращены в окислы и в атмосфере начал накапливаться свободный кислород. Для хемотрофных анаэробов, какими были тогда все архе, кислород оказался ядом. Поэтому они были либо обречены на гибель, либо должны были ограничиться нишами, куда кислород не проникал (глубинные области морей и океанов, выходы лавы и подземных вод и др.). Однако у бактерий успели появиться виды (протеобактерии), которые, обзаведясь механизмом окислительного фосфорилирования, стали использовать кислород для получения энергии, запасаемой в АТФ (как при фотосинтезе). Естественно, для них кислород стал не ядом, а благом. Анаэробы могли облегчить свое существование, вступив в состояние симбиоза с протеобактериями, которые, поглощая кислород, осуществляли локальную детоксикацию. Если вернуться к представлению о эукариотах как о продолжении одной из линий архе, то ранние эукариоты были анаэробами и так же, как архе, нуждались в тесном общении с утилизирующими кислород бактериями.

Около 20-ти лет тому назад исследование митохондрий и хлоропластов, присутствующих в клетках животных (только митохондрии) и растений (митохондрии и хлоропласты), неопровержимо доказало их бактериальное происхождение. Тогда же получила признание гипотеза формирования современных эукариот, благодаря имевшим место случаям симбиоза ранних эукариот с бактериями, которые трансформировались в митохондрии (Gray, 1989; Cavalier-Smith, 2002). Митохондрии стали внутриклеточными энергетическими фабриками эукариотической клетки, в которых осуществляется синтез АТФ по механизму аэробного окислительного фосфорилирования (Рис. 5А). На основании генетического анализа разных форм современных эукариот многие исследователи пришли к заключению о единственном эпизоде симбиоза раннего эукариота с П-протеобактерией, в результате которого эукариоты приобрели митохондрии. Симбиоз уже содержавших митохондрии эукариотических клеток с фотосинтезирующими бактериями, которые трансформировались в хлоропласты, дал миру растения, в первую очередь водоросли. Произошло это около 1.5 млрд лет тому назад (Yoon et al., 2004). У различных водорослей, помимо других отличий, обнаружены разные формы хлорофилла, характерные для определенных фотосинтезирующих бактерий. Это означает, что акты симбиоза, приводившие к образованию хлоропластов, были неоднократны. В частности, зеленые водоросли, давшие начало наземным растениям, произошли от эукариотической клетки, вступившей в симбиоз с зеленой бактерией (для обзора Малахов, 2004).