27. Кручение и склеивание
В нашей местной начальной школе существует традиция приглашать в класс родителей для разговоров с детьми. Благодаря этому ребята узнают о различных профессиях и многих вещах, которым их не учат в школе.
Когда пришла моя очередь, я явился в первый класс, где училась моя дочь, с сумкой, наполненной лентами Мебиуса124. Накануне вечером мы с женой нарезали длинные полоски из бумаги и скрутили каждый из них на пол-оборота, вот так:
а затем склеили концы полосок так, чтобы получились ленты Мебиуса.
Для этого увлекательного занятия с формами для шестилетних детей требуются лишь ножницы, карандаши, скотч и немного любознательности.125
Когда мы с женой раздали ученикам ленты Мебиуса и указанные выше принадлежности, учитель спросил у детей, каким, по их мнению, предметом они сейчас занимаются. Один мальчик поднял руку и сказал: «Не уверен, каким именно, но точно знаю, что не языкознанием».
Конечно, учитель ожидал от него ответа «искусство» или, скорее, «математика». Однако лучшим ответом стала бы «топология»126. (В Итаке кто-нибудь из первоклассников обязательно бы такое выдал. Однако в том году ученик, чьи родители занимались топологией, учился в другом классе.)
Итак, что же такое топология? Это энергично развивающаяся отрасль современной математики, ответвление геометрии, но только более свободное. В топологии две формы рассматриваются как одна, если одна из них непрерывно переходит в другую в результате изгибов, кручения, растягивания или любой другой непрерывной деформации, но при этом ее нельзя разрывать или прокалывать. В отличие от жестких объектов в геометрии, объекты в топологии ведут себя так, как если бы были бесконечно гибкими или сделанными из идеальной резины.
Топология фокусирует внимание на самых глубинных свойствах формы, тех, которые не изменяются после непрерывной деформации. Например, две полоски резины, одна в форме квадрата, а вторая — круга, топологически неразличимы. Здесь не имеет значения, что у квадрата четыре угла и четыре прямые стороны. Эти свойства несущественны. При непрерывной деформации от них можно избавиться, округлив углы квадрата и изогнув его стороны в дуги.
Но есть одна вещь, от которой подобная деформация избавиться не может — это свойственная кругу и квадрату замкнутость линии границы127. Обе фигуры ограничены замкнутыми кривыми. Это их общая топологическая сущность.