Некоторые возражения доказательствам Евклида смотрятся как придирки, однако невинные очевидные допущения без всяких видимых последствий могут иногда равняться серьезным теоретическим утверждениям. К примеру, допущение существования всего одного треугольника, чья сумма углов равна 180°, позволяет доказать, что у всех треугольников сумма углов составляет 180°, а также позволяет доказать постулат параллельности.
В 1871 году прусский математик Феликс Клейн [Кляйн] показал, как устранить очевидное противоречие в сферической модели эллиптического пространства Римана, усовершенствовав попутно и Евклида [178] . Вскоре после этого математики вроде Бельтрами и Пуанкаре предложили свои новые модели и подходы к геометрии. В 1894 году итальянский логик Джузеппе Пеано выдвинул новый набор аксиом для определения евклидовой геометрии [179] . В 1899 году Гильберт, не знакомый с работами Пеано, выдал свою версию формулировки геометрии – в наиболее распространенном ныне виде [180] .
Гильберт полностью посвятил себя прояснению фундаментальных основ геометрии (а впоследствии помог развить общую теорию относительности Эйнштейна). Он многократно пересматривал свои формулировки – до самой смерти в 1943 году. Первый шаг его метода – превращение неявных допущений Евклида в развернутые утверждения. В свою систему Гильберт – по крайней мере в седьмом издании своего труда в 1930 году, – включил восемь не определенных понятий и увеличил число аксиом Евклида с десяти (включая общие утверждения) до двадцати [181] . Аксиомы Гильберта разделили на четыре группы. Они включают в себя не опознанные Евклидом допущения вроде тех, что мы уже рассмотрели:
...
Аксиома I-3: Каждой прямой a принадлежат по крайней мере две точки. Существуют по крайней мере три точки, не принадлежащие одной прямой.
Аксиома II-3: Среди любых трех точек, лежащих на одной прямой, существует не более одной точки, лежащей между двумя другими.
Гильберт и другие ученые доказали, что все свойства евклидова пространства можно вывести из этих аксиом.
* * *
Революция искривленного пространства глубоко повлияла на все области математики. Примерно со времен Евклида и до работ Гаусса и Римана, обнаруженных посмертно, математика была по большей части дисциплиной прагматической. Евклидова структура воспринималась как описание физического пространства. Математика в некотором смысле была разновидностью физики. Вопросы непротиворечивости математических теорий казались порожними – доказательства следовало искать в физическом мире. Но к 1900 году математики осознали, что аксиомы – спорные утверждения, они суть всего лишь основа системы, следствия которой необходимо изучать в некоем подобии умозрительной игры. Внезапно математические пространства превратились в абстрактные логические конструкты. Природа физического пространства стала самостоятельным предметом, вопросом физики, а не математики.