. В то же самое время произведение массы на скорость рассматривалось как
мера движения. Именно исходя из этих представлений, возникла идея о сохранения количества движения.
Первая формулировка принадлежит Декарту, она опубликована в его «Началах философии» в 1644 году. В его понимании закон, без сомнения, существует и его основа – теологическая: «Бог – первопричина движения, он постоянно сохраняет в мире одинаковое его количество». Декарт не дал математического выражения закона, в том смысле, что не написал соответствующих формул. Однако, благодаря ясности его определений, нужды в этом фактически нет: «Когда одна частица материи движется вдвое скорее другой, а эта последняя – вдвое по величине больше первой, то в меньшей столько же движения, сколько и в большей из частиц; и что насколько движение одной частицы замедляется, настолько же движение какой-либо иной возрастает».
Активнейшим оппонентом Декарту выступил Лейбниц. Он, увлеченный идеей живых сил, как мы уже знаем, считал, что мерой движения является не mv, а mv>2, и что сохраняется только вторая, а не первая величина. Возникла путаница, которая долгое время оставалась в умах исследователей и мешала осознать соотношение законов сохранения для живых сил и количества движения.
Развитие динамики Ньютона, шаг за шагом, привело к пониманию, что сохраняются обе величины. Оказалось, что закон сохранения количества движения непосредственно связан со всеми законами механики Ньютона. Действительно, если нет внешних воздействий, то количество движения сохраняется (1-й закон); если есть определенное воздействие внешней силы, то определенным образом меняется и количество движения (2-й закон); для замкнутой системы взаимодействующих тел происходит обмен количеством движения, но поскольку взаимодействия осуществляются, следуя 3-му закону, то в результате общее количество движения сохраняется.
Как выводились законы сохранения и строились сохраняющиеся величины в дорелятивистской механике и электродинамике до появления СТО? Преобразованиями в уравнениях движения частиц, механических систем, уравнений поля выделялись специальные комплексы. Их интегрирование приводило к выражениям, которые не изменяются со временем. Это и были сохраняющиеся величины для системы: энергия, количество движения и угловой момент. Эта ситуация сохранялась до конца XIX – начала XX века. Было даже установлено, что количество движения и угловой момент соответствуют смещениям и вращениям плоского евклидова пространства – абсолютного пространства механики Ньютона. Именно эти «движения» являются симметриями пространства Евклида. Но как-то на этом особо не акцентировалось внимания, и этими симметриями не пользовались для построения сохраняющихся величин. Более того, долгое время оставалась в тени одна из главных симметрий – «смещение» по абсолютному времени, поэтому сохраняющаяся величина «энергия» была сама по себе.