Опорное, или фоновое, пространство-время не обязательно должно быть плоским, оно обычно определяется характером конкретных моделей или задач. Так, например, для реальных гравитационных волн естественно выбрать в качестве фона пространство-время какого-либо космологического решения. Конкретный выбор фона является одним из ограничений, которое позволяет корректно говорить о локализации. Гравитационные волны, в силу теории, должны переносить положительную энергию. Именно на этом основан метод детектирования, который заключается в том, что под их воздействием должны смещаться зеркала в интерферометрах. Кроме того, это уже, хотя и косвенно, подтверждено наблюдениями. Для некоторых двойных систем достоверно известно, что их компоненты сближаются. Это означает, что их отрицательная энергия связи по абсолютной величине становится больше, т. е. с гравитационными волнами происходит отток положительной энергии.
В отношении эйнштейновского примера с изолированной системой можно сказать, что также вводится некоторое «опорное» фиксированное пространство Минковского, но не везде, а в очень удаленной окрестности системы. В этом случае также удается локализовать сохраняющиеся величины, то есть определить глобальные (полные для всей системы) сохраняющиеся величины. Таким образом, можно определить энергию, импульс и т. д. всего, что «внутри», рассматривая энергию гравитационного поля вместе со всей материей.
Основываясь на этом принципе, можно определить энергию, скажем, черной дыры Шварцшильда. Удаляясь от центра, попадаем в почти плоскую область, где возмущения метрики очень слабые. Теперь их можно рассматривать как самостоятельное поле в пространстве Минковского. Характер убывания возмущений позволяет рассчитать полную энергию, которая заключена под сферой, определенной положением наблюдателя. В пределе, на бесконечности получим полную энергию всей системы. Для черной дыры Шварцшильда – это mc>2, где m – параметр массы в решении.
В силу сложности определения сохраняющихся величин в ОТО, существует множество методов их построения, среди них встречаются ошибочные, противоречащие некоторым фундаментальным требованиям. Расчет полной энергии черной дыры является одним из тестов на удовлетворение этим требованиям.
Обсуждая решение Шварцшильда, мы отмечали, что это внешнее вакуумное решение, которое может быть в равной степени связано как с черной дырой, так и с обычной регулярной звездой. Тогда что получается, если в обоих случаях решение характеризуется одним и тем же параметром m, то обе системы будут иметь одну и ту же полную энергию