для материи и гравитационного поля. Как оказалось, именно это требование в конечном итоге привело Эйнштейна к правильной формулировке уравнений.
Хотя, конечно, более рационально построить уравнения так, как изложено в Дополнении 5, чтобы удовлетворить требованиям совместности геометрической и материальной частей. Мы привели этот факт, чтобы подчеркнуть, насколько важным оказался теоретический анализ законов сохранения еще в период построения ОТО.
Эйнштейн, интерпретируя нелокализуемость плотности энергии гравитационного поля, отстаивал точку зрения, что это не недостаток теории, а особое свойство такого поля. Для простых моделей были рассмотрены возможные способы «локализации» гравитационной энергии. Так, рассматривая островную (изолированную) систему, Эйнштейн предложил следующее: «Чтобы можно было говорить об энергии или импульсе системы, плотности энергии и импульса должны обращаться в нуль вне некоторой области B. Это будет только тогда, когда вне области B компоненты метрики постоянны, то есть когда рассматриваемая система как бы погружена в «галилеевское пространство», и мы пользуемся «галилеевскими координатами» для описания окружения системы». В данном случае «галилеевское пространство» играет роль пространства Минковского, относительно которого сохраняющиеся величины в СТО определяются однозначно. В СТО, однако, можно однозначно определить и плотности, а здесь только полные характеристики всей системы, поскольку «галилеевское пространство» определено только в окрестностях системы.
Локализация сохраняющихся величин в ОТО
Слабые гравитационные волны были представлены как метрические возмущения, распространяющиеся в плоском пространстве-времени. Это означает, что вводится некоторое «опорное» фиксированное пространство Минковского. Но его фактически нет в ОТО как теории с динамической метрикой! Но такова постановка задачи: изучение (1) слабых метрических возмущений (2) в плоском пространстве-времени. И (1), и (2) – это ограничения, определенные постановкой задачи, которые в данном случае вводятся везде, во всем физическом пространстве-времени. Эти ограничения позволяют рассматривать только линейные возмущения в пространстве Минковского. Такое исследование принципиально не отличается от исследования электродинамики в пространстве Минковского. У линейного гравитационного поля исключаются нефизические степени свободы, аналогично тому, как это делается в электродинамике.
А в итоге получается, что для системы слабых гравитационных волн (этой конкретной задачи) локальные сохраняющиеся величины (плотности энергии, импульса, и т. д.) определяются вполне однозначно.