Солнечная система. Для проверки какой-либо гравитационной теории при измерении движений в планетной системе используется PPN-формализм. Как в любой векторной теории, в теории Хоржавы должны присутствовать эффекты привилегированной системы отсчета. Это приводит к тому, что оказываются ненулевыми PPN-параметры группы α. Действительно, кроме двух PPN-параметров, присущих ОТО, хронометрическая теория имеет еще два: α>1 и α>2. Чтобы не было противоречий с наблюдениями, они должны быть достаточно малыми: α>1 ≤ 10>-4 и α>2 ≤ 10>-7. Будем ждать повышения точности измерений, тогда, возможно, существование α>1 и α>2 (а значит и теории Хоржавы) будет подтверждено или опровергнуто.
Черные дыры. В ОТО черная дыра представляет объект, где центральная часть, обычно сингулярная, окружена сферической поверхностью, названной горизонтом событий. Его наличие связано с тем, что в ОТО существует предельная скорость – это скорость света. Основное свойство черной дыры состоит в том, что в ОТО никакая частица, никакое поле и даже световой сигнал не могут ее покинуть, то есть уйти за пределы горизонта событий.
В хронометрической теории есть также решения, описывающие объекты типа черных дыр. Однако вспомним, что в этой теории нет предельной скорости, возможно распространение взаимодействий со скоростью большей, чем скорость света и даже мгновенно. Если бы эта возможность была в ОТО, то само понятие горизонта событий потеряло бы смысл, поскольку появляется возможность покинуть объект, находясь и на горизонте событий, и под ним. При этом появляются противоречия, связанные с термодинамикой системы, такие как уменьшение энтропии. Сейчас не известны все решения для черных дыр в теории Хоржавы в силу ее молодости, однако среди известных есть такие, которые позволяют избежать этих осложнений. Оказывается, что в черной дыре в рамках хронометрической теории может быть так называемый универсальный горизонт. Он находится под горизонтом событий («ближе» к сингулярности) и замечателен тем, что поверхности постоянного времени, находящиеся под ним, не пересекают его. Это означает, что сигнал даже бесконечной скорости (мгновенный) не может выйти из-под этого промежуточного горизонта. А для таких объектов вышеупомянутые противоречия снимаются.

Рис. 12.2. Диаграмма хронометрической черной дыры
На рис. 12.2 представлена так называемая диаграмма Пенроуза черной дыры Шварцшильда. Точки i>— и i>+ представляют всю временную бесконечность прошлого и всю временную бесконечность будущего, точка i>0 объединяет всю пространственную бесконечность. Прямая