>+ является горизонтом событий шварцшильдовой черной дыры – это видно из расположения световых конусов. Действительно, квадрат
B i>+i>0i>— – это все внешнее пространство-время
вне горизонта событий, в то время как треугольник
i>+B i>+ – это пространство-время
под горизонтом событий, откуда сигнал не может выйти во внешнюю область, и где ломаная линия – это сингулярность
r = 0. На диаграмму шварцшильдовой дыры наложена диаграмма черной дыры хронометрической теории. Все кривые, соединяющие
i>0 и
i>+, – это сечения постоянного поля хронона φ
= const, то же самое, постоянного времени (одновременности). Жирная дуга – это тот самый
универсальный горизонт ξ=ξ
>*, под ним, ближе к сингулярности, дуги
i>+i>+, соединяющие концы ломаной линии – это тоже сечения постоянного времени (одновременности). Ясно, что если сигнал в хронометрической теории распространяется даже мгновенно, то есть вдоль сечений одновременности, то он не сможет пересечь универсальный горизонт и покинуть хронометрическую черную дыру.
Космология. В масштабах Вселенной теория Хоржавы также имеет шанс заявить о своей жизнеспособности. Обсудим космологические решения в новой теории. Они будут примерно такими же, как в ОТО, с той разницей, что вместо обычной гравитационной постоянной G будет фигурировать эффективная гравитационная постоянная G>E. Теперь вспомним модифицированный закон Ньютона, о котором говорилось выше. Там появляется своя эффективная гравитационная постоянная, отличная от G, обозначим ее G>I. Сделаны оценки для разницы: |G>I – G>E | ≤ 0,1. Нет запрета на то, что в будущем будет определена значимая величина для этой разницы, но так же возможно, что она будет исключена.
На основе ОТО разработана хорошо согласованная с наблюдениями теория космологических возмущений. Она позволяет, например, объяснить структуру, то есть распределение галактик и их скоплений в доступной наблюдениям области Вселенной. Тем не менее, если при повышении точности наблюдений будет обнаружена, скажем, анизотропия, не предсказанная ОТО, то это повод обратиться к теории Хоржавы. Теория Хоржавы настолько молода, что вряд ли ее саму и выводы, сделанные на ее основе, можно считать устоявшимися и всеми признанными. Несмотря на это, как теория в целом, так и выводы, представляются очень интригующими и важными.