Гравитация. От хрустальных сфер до кротовых нор (Петров) - страница 167

. Обычно в пределе, при стремления массы гравитона к нулю, такие теории переходят в ОТО. Если в пределе слабого поля и малых скоростей они совпадают с ОТО, то в сильных полях и на космологических масштабах расходятся с ОТО, предлагая другие эффекты. Например, может оказаться, что вместо решений для черных дыр появятся решения для сингулярностей без горизонтов («голых сингулярностей»), вместо расширяющейся вселенной появляются осциллирующие вселенные.

Проверить достоверность этих предсказаний напрямую пока невозможно, это остается предметом дальнейших исследований. До сих пор теории массивной гравитации имели общий изъян, их решения дают некие состояния с отрицательной энергией. Эти состояния называются «духами», объяснить их в рамках разумных представлений не получается, и поэтому они нежелательны. Однако буквально в последнее время появились варианты массивной гравитации без «духов».

Закон Ньютона

Закон всемирного тяготения после обсуждения в третьем чтении был отправлен на доработку…

Фольклор

Проверка закона Ньютона. Осмысление закона Ньютона до сих пор играет очень важную роль для осмысления представлений о гравитации вообще. Как можно проверить в лабораторных условиях, живем ли мы на бране (или каком другом многомерном мире), хотя и не можем «выйти» в дополнительное измерение? Вспомним, что гравитация, в отличие от остальных взаимодействий, распространяется во всех пяти измерениях. Чтобы использовать этот факт, озадачимся геометрическим смыслом закона Ньютона. Как мы помним, он утверждает, что сила гравитационного взаимодействия падает обратно пропорционально квадрату расстояния ~ 1/r>2. Теперь вспомним картинку из школьного учебника физики, где действие силы описывается силовыми линиями. На такой картинке сила на данном расстоянии r определяется плотностью силовых линий, «прошивающих» сферу радиуса r: чем больше площадь сферы, тем меньше плотность линий и, соответственно, сила. А площадь сферы пропорциональна r>2, откуда прямо следует зависимость от расстояния в законе Ньютона. Но это в 3-мерном пространстве, где площадь сферы пропорциональна r>2! В 4-мерном пространстве площадь окружающей сферы будет пропорциональна r>3, и, соответственно, изменится закон Ньютона – сила гравитационного взаимодействия будет падать обратно пропорционально кубу расстояния ~ 1/r>3, и т. д.

Если бы закон обратных кубов имел место на масштабах Солнечной системы, то ясно, что именно он был бы сформулирован Ньютоном. Значит нужно его искать на малых масштабах. Вместе с тем, проверка закона Ньютона важна и для некоторых перспективных многомерных теорий, где дополнительные размерности ком-пактификацированы (свернуты) и их размеры, конечно, меньше планетарных. Тем не менее, они могут достигать десятков микрометров. Когда Рэндолл и Сундрум только предложили свою теорию, закон Ньютона был проверен лишь до масштабов в метры. С тех пор ученые сделали несколько сложнейших (ввиду слабости гравитации) экспериментов с крутильными весами крохотных размеров, и сейчас лабораторные ограничения существенно снизились и приближаются к размерам компактификации.