Гравитация. От хрустальных сфер до кротовых нор (Петров) - страница 88

Указанные величины могут быть измерены внешним наблюдателем с помощью пробных тел: масса черной дыры – по их гравитационному ускорению, угловой момент – по эффекту увлечения инерциальной системы отсчета, заряженная черная дыра отталкивает заряды одинакового с ней знака. Объяснение действия заряда черной дыры не настолько простое, как кажется с первого взгляда. Действительно, фотоны, переносчики электромагнитного взаимодействия, не могут покинуть черную дыру, а поэтому электрической силы не должно быть! Однако при этом считается верным закон о сохранении общего электрического потока сферы как меры электрического заряда, и это спасает положение.

Теорема об «отсутствии волос» фактически говорит о потере детальной информации, связанной с падающей материей. Потеря информации в черной дыре остается принципиальной загадкой. Действительно, базовые теоретические построения в общем случае симметричны относительно обращения времени. Наличие же горизонта делает черную дыру несимметричной, поскольку материя может упасть в дыру, но не может вернуться. При всем этом, теорема об «отсутствии волос» у черной дыры имеет место в рамках ОТО, когда делается ряд предположений о природе Вселенной и свойствах материи. Если же учитывать другие предположения, то ее выводы не будут столь ограниченными. Но эти возможности еще плохо изучены, а пока предполагается, что в нашей почти плоской четырехмерной Вселенной и для больших черных дыр эта теорема должна выполняться.

Черные дыры и релятивистские звезды во Вселенной

Думаю, что для создания шмеля требуется больше мудрости, чем для создания черной дыры.

Юстейн Горде «Апельсиновая девушка»

Теперь мы много знаем о черных дырах, но все выводы сделаны на основании теоретических положений. Однако чрезвычайно важно знать существуют ли такие объекты в природе. Подтверждение их существования было бы еще одним основательным подтверждением общей теории относительности. Для тех типов черных дыр, о которых мы упомянули, основным параметром является масса. Естественно классифицировать черные дыры именно по этому параметру. Обычно в данном случае массу представляют в массах Солнца М>⊙ = 2 ·10>30 кг, которая превышает массу Земли в 333 000 раз.

Начнем обсуждение с черных дыр звездных масс, для которых М>чд ~ 10 М>⊙, а гравитационный радиус может быть 20–30 км. Во-первых, поиск черных дыр именно этого класса ведется очень давно. Во-вторых, на их примере легче понять, как черные дыры могут образовываться. Для этого необходимы некоторые знания из теории эволюции звезд. Один из вариантов такой эволюции изображен на рисунках 8.3. На рис. 8.3 а показано, что где-то во Вселенной из-за флуктуации плотности и последующего наращивания массы из окружающего пространства образовался достаточно массивный, как правило, водородный шар. Под действием гравитации шар сжимается и в результате сильно разогревается. Когда температура доходит до необходимых значений, в центре «зажигается» термоядерная реакция синтеза гелия из ядер водорода и значительно возрастает внутреннее давление. Со временем оно становится настолько большим, что сжатие прекращается и шар (звезда) приходит в стационарное состояние, рис. 8.3 б. После выгорания водорода в центре начинается синтез более тяжелых элементов, а синтез гелия смещается к периферии и т. д., образуется что-то вроде слоеного пирога, рис. 8.3 в. Термоядерные реакции заканчиваются, когда в центре образуется железное ядро. Внутреннее давление ослабевает и уже не может компенсировать внешнее давление гравитационного сжатия. Внешние слои обрушиваются на ядро в виде ударной волны, сталкиваются с ним и «резко» отражаются. В результате оболочка сбрасывается, рис. 8.3 г. Сброс может быть вызван не только отраженной волной, но и другими факторами, например закручиванием быстро вращающимся ядром магнитных силовых линий. Так моделируются взрывы сверхновых. Эта эволюция имеет свои особенности и зависит от множества самых разнообразных параметров, но главным образом – от начальной массы и химического состава звезды.