Знание-сила, 2000 № 09 (879) (Журнал «Знание-сила») - страница 29

Словом, биотехнологии не стоят на месте, и вполне может случиться так, что они смогут своими биологическими методами решить многие из тех проблем, на которые сейчас нацеливаются специалисты по микроэлектронике.


Григорий Зеленко


Лучи, в миллиард раз ярче солнечных, помогают ученым пролить свет на многие научные и технические проблемы.


ТЕХНОЛОГИИ: ШАГ В XXI ВЕК

Александр Корн

Ультраяркие Х-лучи

Сто лет назад Вильгельм Конрад Рентген открыл лучи, позволяющие заглядывать внутрь твердых тел, – в России они носят имя первооткрывателя, а на Западе по-прежнему называются Х-лучами. Восемьдесят лет из прошедшего столетия это открытие широко используется для определения положения атомов в жидких кристаллах, полупроводниках и даже в сложных биологических молекулах типа ДНК. А полвека назад было обнаружено новое – синхротроиное – излучение, которое еще шире раздвигает границы использования рентгеновских лучей. Оно позволяет буквально за минуты получить подробный внутренний портрет вещества – даже некристаллического и неоднородного.


Главное – структура

Есть одно общее качество у полупроводников для миниатюрных компьютерных чипов, магнитных дисков для компьютеров, металлов и сплавов для высокопрочных структур, керамики для машин и турбин, работающих при высокой температуре, полимеров для облегченных деталей автомобиля и самолета, материалов для плоских экранов дисплеев – зависимость свойств от структуры. Современную промышленность и технологию более всего привлекает возможность изменения этой структуры для получения желаемых свойств.

В самом общем виде структура – это положение атомов и поведение электронов, вращающихся вокруг атомных ядер. Атомная структура твердых материалов варьируется от полностью упорядоченных кристаллов, где атомы расположены в точках решетки (дальний порядок), до полностью неупорядоченных образований. Многие материалы, такие как металлы и полупроводники, обладают симметрией дальнего порядка, но могут проявлять характеристики беспорядка на близких расстояниях, где внедрены примеси. Кроме того, материалы могут состоять из большого количества кристаллических зерен с разной ориентацией. Компьютерные чипы основаны на кристаллах кремния, а металлы и сплавы имеют поликристаллическую структуру. Стекла – наиболее известные аморфные материалы.

Что касается электронной структуры материалов, то внутренние электроны жестко связаны с ядрами, а внешние, слабее связанные с ядром, участвуют в химической связи между атомами (валентные электроны) и других процессах, таких как проводимость тока. Изучение валентных электронов показало, что легче всего построить их квантовомеханическую модель для кристаллических тел, когда электрон не привязан к определенному атому.