(п+1)|a|>2, (2.28)
а вероятность того, что он фотон поглотит, равна
n|а|>2, (2.29)
где |а|>2 — вероятность того, что он испустил бы фотон, если бы не было этих n фотонов. Мы уже говорили об этих правилах немного по-иному в гл. 42 (вып. 4). Выражение (2.29) утверждает, что вероятность того, что атом поглотит фотон и совершит переход в состояние с более высокой энергией, пропорциональна интенсивности света, освещающего его. Но, как впервые указал Эйнштейн, скорость, с которой атом переходит в более низкое энергетическое состояние, состоит из двух частей. Есть вероятность |а|>2 того, что он совершит самопроизвольный переход, и есть вероятность вынужденного перехода n|а|>2, пропорциональная интенсивности света, т. е. числу имеющихся фотонов. Далее, как заметил Эйнштейн, коэффициенты поглощения и вынужденного испускания равны между собой и связаны с вероятностью самопроизвольного испускания. Здесь же мы выяснили, что если интенсивность света измеряется количеством имеющихся фотонов (вместо того, чтобы пользоваться энергией в единице объема или в секунду), то коэффициенты поглощения, вынужденного испускания и самопроизвольного испускания все равны друг другу. В этом смысл соотношения между коэффициентами А и В, выведенного Эйнштейном [см. гл. 42 (вып. 4), соотношение (42.18)].
§ 5. Спектр абсолютно черного тела
Мы хотим теперь использовать наши правила для бозе-частиц, чтобы еще раз получить спектр излучения абсолютно черного тела [см. гл. 42 (вып. 4)]. Мы сделаем это, подсчитав, сколько фотонов содержится в ящике, если излучение находится в тепловом равновесии с атомами в ящике. Допустим, что каждой световой частоте со соответствует определенное количество N атомов с двумя энергетическими состояниями, отличающимися на энергию DЕ =hw (фиг. 2.6).
Фиг. 2.6. Излучение и поглощение фотона с частотой w.
Состояние с меньшей энергией мы назовем «основным», с большей — «возбужденным». Пусть N>осни N>возб — средние числа атомов в основном и возбужденном состояниях; тогда для теплового равновесия при температуре Т из статистической механики следует
Каждый атом в основном состоянии может поглотить фотон и перейти в возбужденное состояние, и каждый атом в возбужденном состоянии может испустить фотон и перейти в основное состояние. При равновесии скорости этих двух процессов должны быть равны. Скорости пропорциональны вероятности событий и количеству имеющихся атомов. Пусть n — среднее число фотонов, находящихся в данном состоянии с частотой w. Тогда скорость поглощения из этого состояния есть