Квантовая механика I (Фейнман) - страница 25

>oc>нn|а|>2, а скорость испускания в это состояние есть N>возб(n+1)|а|>2, Приравнивая друг другу эти две скорости, мы получаем

Сопоставляя это с (2.30), имеем

Отсюда найдем

Это и есть среднее число фотонов в любом состоянии с частотой w при тепловом равновесии в полости. Поскольку энергия каждого фотона hw, то энергия фотонов в данном состоянии

есть nhw, или

Кстати говоря, мы уже получали подобное выражение в другой связи [см. гл. 41 (вып. 4), формула (41.15)]. Вспомните, что для гармонического осциллятора (скажем, грузика на пружинке) квантовомеханические уровни энергии находятся друг от друга на равных расстояниях hw, как показано на фиг. 2.7.

Фиг. 2.7. Уровни энергии гармонического осциллятора.

 

Обозначив энергию n-го уровня через nhw. мы получили, что средняя энергия такого осциллятора также давалась выражением (2.33). А сейчас это выражение было выведено для фо­тонов путем подсчета их числа и привело к тому же результату. Перед вами — одно из чудес квантовой механики. Если начать с рассмотрения таких состояний или таких условий для бозе-частиц, когда они друг с другом не взаимодействуют (мы ведь предположили, что фотоны не взаимодействуют друг с другом), а за­тем считать, что в эти состояния могут быть помещены нуль, или одна, или две и т. д. до n частиц, то оказывается, что эта система ведет себя во всех квантовомеханических отношениях в точности, как гармонический осциллятор. Таким осциллято­ром считается динамическая система наподобие грузика на пружинке или стоячей волны в резонансной полости. Вот по­чему можно представлять электромагнитное поле фотонными частицами. С одной точки зрения можно анализировать электро­магнитное поле в ящике или полости в терминах множества гармонических осцилляторов, рассматривая каждый тип коле­баний, согласно квантовой механике, как гармонический ос­циллятор. С другой, отличной точки зрения ту же физику можно анализировать в терминах тождественных бозе-частиц. И итоги обоих способов рассуждений всегда точно совпадают. Невоз­можно установить, следует ли на самом деле электромагнитное поле описывать в виде квантуемого гармонического осциллято­ра или же задавать количество фотонов в каждом состоянии. Оба взгляда на вещи оказываются математически тождествен­ными. В будущем мы сможем с равным правом говорить либо о числе фотонов в некотором состоянии в ящике, либо о номере уровня энергии, связанного с некоторым типом колебаний электромагнитного поля. Это два способа говорить об одном и том же. То же относится и к фотонам в пустом пространстве. Они эквивалентны колебаниям полости, стенки которой отошли на бесконечность.