Квантовая механика I (Фейнман) - страница 4

Заметьте, что уравнение (1.5) кажется написанным задом наперед. Его надо читать справа налево: электрон переходит от s к 1 и затем от 1 к х. В итоге если события происходят друг за другом, т. е. если вы способны проанализировать один из путей частицы, говоря, что она сперва делает то-то, затем то-то, потом то-то, то итоговая амплитуда для этого пути вы­числяется последовательным умножением на амплитуду каж­дого последующего события. Пользуясь этим законом, мы мо­жем уравнение (1.4) переписать так:

А теперь мы покажем, что, используя одни только эти прин­ципы, уже можно решать и более трудные задачи, наподобие показанной на фиг. 1.2.

Фиг. 1.2. Интерференционный опыт посложнее.

Тут изображены две стенки: одна с двумя щелями 1 и 2, другая с тремя — а, b и с. За второй стенкой в точке х стоит детектор, и мы хотим узнать амплитуду того, что частица достигнет х. Один способ решения состоит в расчете суперпозиции, или интерференции, волн, проходящих сквозь щели; но можно сделать и иначе, сказав, что имеется шесть возможных путей, и накладывая друг на друга их амплитуды. Электрон может пройти через щель 1, затем через щель а и потом в х, или же он мог бы пройти сквозь щель 1, затем сквозь щель b и затем в x; и т. д. Согласно нашему второму принципу, амплитуды взаимоисключающих путей складываются, так что мы должны записать амплитуду перехода от s к х в виде суммы шести отдельных амплитуд. С другой стороны, согласно третье­му принципу, каждую из них можно записать в виде произведе­ния трех амплитуд. Например, одна из них — это амплитуда перехода от s к 1, умноженная на амплитуду перехода от 1 к а и на амплитуду перехода от а к я. Используя наше сокращенное обозначение, полную амплитуду перехода от s к х можно запи­сать в виде

Можно сэкономить место, использовав знак суммы:

Чтобы, пользуясь этим методом, проводить какие-то вы­числения, надо, естественно, знать амплитуду перехода из од­ного места в другое. Я приведу пример типичной амплитуды. В ней не учтены некоторые детали, такие, как поляризация све­та или спин электрона, а в остальном она абсолютно точна. С ее помощью вы сможете решать задачи, куда входят различные сочетания щелей. Предположим, что частица с определенной энергией переходит в пустом пространстве из положения r>1 в положение r>2. Иными словами, это свободная частица: на нее не действуют никакие силы. Отбрасывая численный множитель впереди, амплитуду перехода от r>1 к r>2 можно записать так:

где r>12=r>2-r>1 а р — импульс частицы, связанный с ее энергией Е релятивистским уравнением