или нерелятивистским уравнением
>p>2/2m = Кинетическая энергия.
Уравнение (1.7) в итоге утверждает, что у частицы есть волновые свойства, что амплитуда распространяется как волна с волновым числом, равным импульсу, деленному на
В общем случае в амплитуду и в соответствующую вероятность входит также и время. В большинстве наших первоначальных рассуждений будет предполагаться, что источник испускает частицы с данной энергией беспрерывно, так что о времени не нужно будет думать. Но, вообще-то говоря, мы вправе заинтересоваться и другими вопросами. Допустим, что частица испущена в некотором месте Р в некоторый момент и вы хотите знать амплитуду того, что она окажется в каком-то месте, скажем г, в более позднее время. Это символически можно представить в виде амплитуды t = t>1 P, t= 0>. И ясно, что она зависит и от r, и от t. Помещая детектор в разные места и делая измерения в разные моменты времени, вы получите разные результаты. Эта функция r и t, вообще говоря, удовлетворяет дифференциальному уравнению, которое является волновым уравнением. Скажем, в нерелятивистском случае это уравнение Шредингера. Получается волновое уравнение, аналогичное уравнению для электромагнитных волн или звуковых волн в газе. Однако надо подчеркнуть, что волновая функция, удовлетворяющая уравнению, не похожа на реальную волну в пространстве; с этой волной нельзя связать никакой реальности, как это делается со звуковой волной.
Хотя, имея дело с одной частицей, можно начать пытаться мыслить на языке «корпускулярных волн», но ничего в этом хорошего нет, потому что если, скажем, частиц не одна, а две, то амплитуда обнаружить одну из них в r>1 а другую в r>2 не есть обычная волна в трехмерном пространстве, а зависит от шести пространственных переменных r>1и r>2. Когда частиц две (или больше), возникает потребность в следующем добавочном принципе. Если две частицы не взаимодействуют, то амплитуда того, что одна частица совершит что-то одно, а другая сделает что-то другое, есть произведение двух амплитуд — амплитуд того, что две частицы проделали бы это по отдельности. Например, если <а|s>1>есть амплитуда того, что частица 1 перейдет из s>1 в а, а >2> — амплитуда того, что частица 2 перейдет из s>2 в b, то амплитуда того, что оба эти события произойдут вместе, есть
>l>>2>.
И еще одну вещь надо подчеркнуть. Предположим, нам неизвестно, откуда появляются частицы на фиг. 1.2, прежде чем они пройдут через щели 1 и 2 в первой стенке. Несмотря на это, мы все равно можем предсказать, что произойдет за стенкой (скажем, вычислить амплитуду попасть в