Хочется опять подчеркнуть, что мы понимаем под базисными состояниями. Они напоминают тройку состояний, которые можно отобрать с помощью одного из наших приборов Штерна — Герлаха. Одно условие состоит в том, что если у вас есть базисное состояние, то будущее не зависит от прошлого. Другое условие — что если у вас есть полная совокупность базисных состояний, то формула (3.24) справедлива для любой совокупности начальных и конечных состояний j и c. Но не существует никакой особой совокупности базисных состояний. Мы начали с рассмотрения базисных состояний по отношению к прибору Т. В равной мере мы бы могли рассмотреть другую совокупность базисных состояний — по отношению к прибору S, к прибору R и т. д. Мы обычно говорим о базисных состояниях «в каком-то представлении».
Другое требование к совокупности базисных состояний (в том или ином частном представлении) заключается в том, что им положено полностью отличаться друг от друга. Под этим мы понимаем, что если имеется состояние (+T), то для него нет амплитуды перейти в состояние (О Т) или (-Т). Если i и j обозначают два базисных состояния в некотором представлении, то общие правила, которые мы обсуждали в связи с (3.8), говорят, что
<j|i>=0
для любых неравных между собой i и j. Конечно, мы знаем, что
<i|i>=1.
Эти два уравнения обычно пишут так:
где d>ij («символ Кронекера») — символ, равный по определению нулю при i№j и единице при i=j.
· Уравнение (3.25) не независимо от остальных законов, о которых мы упоминали. Бывает, что нас не особенно интересует математическая задача поиска наименьшей совокупности независимых аксиом, из которых все законы проистекут как следствия. Нам вполне достаточно обладать совокупностью, которая полна и по виду непротиворечива. Однако мы беремся показать, что (3.25) и (3.24) не независимы. Пусть j в (3.24) представляет одно из базисных состояний той же совокупности, что и i, скажем j-e состояние; тогда мы имеем
Но (3.25) утверждает, что <i|j> равно нулю, если только i не равно j, так что сумма обращается просто в j} и получается тождество, что говорит о том, что эти два закона не независимы.
Можно видеть, что если справедливы оба уравнения (3.25) и (3.24), то между амплитудами должно существовать еще одно соотношение. Уравнение (3.10) имело вид
Если теперь посмотреть на (3.24) и предположить, что и j, и c — это состояние (+S), то слева получится <+S|+S>, а это, конечно, равно единице, и мы должны получить (3.19)
Эти два уравнения согласуются друг с другом (для всех относительных ориентации приборов