и
S) только тогда, когда
Стало быть, для любых состояний j и c
Если бы этого не было, вероятности «не сохранились бы» и частицы «терялись бы».
Прежде чем идти дальше, соберем все три общих закона для амплитуд, т. е. (3.24) —(3.26):
В этих уравнениях i и j относятся ко всем базисным состояниям какого-то одного представления, тогда как j и c — это любое возможное состояние атома. Важно отметить, что закон II справедлив лишь тогда, когда суммирование проводится по всем базисным состояниям системы (в нашем случае по трем: +Т, 0Т, -Т). Эти законы ничего не говорят о том, что следует избирать в качестве базиса. Мы начали с прибора Т, который является опытом Штерна — Герлаха с какой-то произвольной ориентацией, но и всякая другая ориентация, скажем W, тоже подошла бы. Вместо i и j нам пришлось бы ставить другую совокупность базисных состояний, но все законы остались бы правильными; какой-то единственной совокупности не существует. Успех в квантовой механике часто определяется тем, умеете ли вы использовать тот факт, помня, что расчет можно вести из-за этого разными путями.
§ 6. Механика квантовой механики
Мы покажем вам сейчас, почему полезны эти законы. Пусть у нас есть атом в заданном состоянии (под этим мы подразумеваем, что он как-то был приготовлен), и мы хотим знать, что с ним будет в таком-то опыте. Иными словами, мы начинаем с состояния j атома и хотим знать, каковы шансы, что он пройдет через прибор, который пропускает атомы только в состоянии c. Законы говорят, что мы можем полностью описать прибор тремя комплексными числами i> — амплитудами того, что каждое из базисных состояний окажется в состоянии c, и что мы, пустив атом в прибор, можем предсказать, что произойдет, если опишем состояние атома, задав три числа <i|j>,— амплитуды того что атом из своего первоначального состояния перейдет в любое из трех базисных состояний. Это очень и очень важная идея, Рассмотрим другую иллюстрацию. Подумаем о следующей задаче. Начинаем с прибора S, затем имеется какая-то сложная мешанина, которую мы обозначаем A, а дальше стоит прибор R:

Под А мы подразумеваем любое сложное расположение приборов Штерна — Герлаха — с перегородками и полуперегородками, под всевозможными углами, с необычными электрическими и магнитными полями,— словом, годится все, что вам придет в голову. (Очень приятно ставить мысленные эксперименты — тогда нас не тревожат никакие заботы, возникающие при реальном сооружении приборов!) Задача состоит в следующем: с какой амплитудой частица, входящая в область