Квантовая механика I (Фейнман) - страница 46

Девятка амплитуд, описывающая прибор, часто изобра­жается в виде квадратной матрицы, именуемой матрицей

<j|A|i>:

Вся математика квантовой механики является простым расши­рением этой идеи. Приведем несложный пример. Пусть име­ется прибор С, который мы хотим проанализировать, т. е. рассчитать различные <j|С|i>. Скажем, мы хотим знать, что случится в эксперименте типа

Но затем мы замечаем, что С просто состоит из двух частей: стоящих друг за другом приборов А и В. Сперва частицы про­ходят через А, а потом — через B, т. е. можно символически записать

Мы можем прибор С назвать «произведением» А и В. Допустим также, что мы уже знаем, как эти две части анализировать; таким образом, мы можем узнать матрицы А и В (по отношению к Т). Тогда наша задача решена. Мы легко найдем С|j> для любых входных и выходных состояний. Сперва мы напишем

Понимаете, почему? (Подсказка: представьте, что между А к В поставлен прибор Т.) Если мы затем рассмотрим особый случай, когда j и cтакже базисные состояния (прибора Т), скажем i и j, то получим

Это уравнение дает нам матрицу прибора «произведения» С через матрицы приборов А и В. Математики именуют новую матрицу <j|С|i>, образованную из двух матриц <j|В|i> и <j|А|i> в соответствии с правилом, указанным в (3.36), матричным «произведением» ВА двух матриц В и А. (Заметьте, что порядок существен, АВ№ВА.) Итак, можно сказать, что матрица для стоящих друг за другом двух частей прибора — это матричное произведение матриц для этих двух приборов порознь (причем первый прибор стоит в произведении справа). И каждый, кто знает матричную алгебру, поймет, что речь идет просто об уравнении (3.36).

§ 7. Преобразование к другому базису

Мы хотим сделать одно заключительное замечание относи­тельно базисных состояний, используемых в расчетах. Предпо­ложим, мы захотели работать с каким-то определенным базисом, скажем с базисом S, а кто-то другой решает провести те же расчеты с другим базисом, скажем с базисом Т.

Для конкретности назовем наши базисные состояния состоя­ниями (iS), где i= +, 0, -, а его базисные состояния назовем (jT). Как сравнить его работу с нашей? Окончательные ответы для результатов любых измерений обязаны оказаться одинако­выми, но употребляемые в самих расчетах всевозможные мат­рицы и амплитуды будут другими.

Как же они соотносятся? К примеру, если оба мы начи­наем с одного и того же j, то мы опишем это j на языке трех амплитуд <iS|j> — амплитуд того, что j переходит в наши базисные состояния в представлении S, а он опишет это j ам­плитудами <