Квантовая механика I (Фейнман) - страница 47

|j> — амплитудами того, что состояние j переходит в базисные состояния в его, Т, представлении. Как проверить, что мы оба на самом деле говорим об одном и том же состоянии j? Это можно сделать с помощью нашего общего пра­вила II [см. (3.27)]. Заменяя cлюбым из его состояний jT, напишем

Чтобы связать оба. представления, нужно задать только девять комплексных чисел — матрицу <jT|iS>, Эту матрицу затем можно использовать для того, чтобы перевести все его урав­нения в нашу форму. Она сообщает нам, как преобразовать одну совокупность базисных состояний в другую. (По этой причине <jT|iS>иногда именуют «матрицей преобразования от представления S к представлению T». Слова ученые!)

Для случая частиц со спином 1, у которых бывает только тройка базисных состояний (у высших спинов их больше), математическая ситуация напоминает то, что мы видели в век­торной алгебре. Каждый вектор может быть представлен тремя числами — компонентами вдоль осей х, у и z. Иначе говоря, всякий вектор может быть разложен на три «базисных» вектора, т. е. векторы вдоль этих трех осей. Но предположим, что кто-то другой решает выбрать другую тройку осей: x', y' и z'. Чтобы представить любой частный вектор, он воспользуется другими (а не теми, что мы) числами. Его выкладки не будут похожи на наши, но окончательный итог окажется таким же. Мы это уже рассматривали раньше и знаем правила преобразования векто­ров от одной тройки осей к другой.

Вам может захотеться увидать, как действуют квантовомеханические преобразования, и самим попробовать их проде­лать; для этого мы приведем здесь без вывода матрицы преобра­зований амплитуд спина 1 от представления S к другому пред­ставлению Т для разных взаимных ориентации фильтров S и Т. (В следующих главах мы покажем, как получаются эти результаты.)

Первый случай. У прибора Т ось у (вдоль которой дви­жутся частицы) та же самая, что и у S, но Т повернут вокруг общей оси у на угол а (на фиг. 3.6). (Чтобы быть точными, ука­жем, что в приборе Т установлена система координат х' , у', z', связанная с координатами х, у, z прибора S формулами z'=zcosa+хsina; х'=хcosa- zsina; у' = у.) Тогда ам­плитуды преобразований таковы:

(3.38)

Второй случай. Прибор Т имеет ту же ось г, что и S, но повернут относительно оси z на угол b. (Преобразование координат: z'=z; х' =xcosb+ysinb; у'=уcosb- хsinb.) Тогда амплитуды преобразований суть

(3.39)

Заметьте, что любые вращения Т можно составить из опи­санных двух вращений.

Если состояние j определяется тремя числами

и если то же состояние описывается с точки зрения