Квантовая механика I (Фейнман) - страница 45

в состоянии (+S), выйдет из него в состоянии (0R), так что сможет пройти через последний фильтр R? Имеется стандартное обозначение для такой амплитуды:

<0R|A|+S>.

Как обычно, это надо читать справа налево: < Конец | Через | Начало>.

Если случайно окажется, это А ничего не меняет, а просто яв­ляется открытым каналом, тогда мы пишем

<0R |1|+S>=<0R|+S>; (3.29)

эти два символа равнозначны. В более общих задачах мы можем заменить (+S) общим начальным состоянием j, а (0R)об­щим конечным состоянием c и захотеть узнать амплитуду

A|j>.

Полный анализ прибора А должен был бы дать нам амплитуду А|j> для каждой мыслимой пары состояний j и c — бес­конечное количество комбинаций! Как же сможем мы тогда дать краткое описание поведения прибора А?Это можно сде­лать следующим путем. Вообразим, что мы видоизменили прибор (3.28) так:

На самом деле это вовсе не видоизменение, потому что широко раскрытые приборы Т ничего нигде не меняют. Но они подска­зывают нам, как проанализировать проблему. Имеется опре­деленная совокупность амплитуд <i|+S> того, что атомы из S перейдут в состояние i прибора Т. Затем имеется другая совокупность амплитуд того, что состояние i (по отношению к Т), войдя в А, выйдет оттуда в виде состояния j (по отношению к Т). И наконец, имеется амплитуда того, что каждое состоя­ние j пройдет через последний фильтр в виде состояния (0R). Для каждого допустимого пути существует амплитуда вида

<0R|j><j|A|i><i|+S>,

и полная амплитуда есть сумма членов, которые можно полу­чить из всех сочетаний i и j. Нужная нам амплитуда равна

Если (О Л) и (+S) заменить общими состояниями c и j, то полу­чится выражение такого же рода; так что общий результат выглядит так:

Теперь заметьте, что правая часть (3.32) на самом деле «проще» левой части. Прибор А полностью описан девятью числами <j|А|i>, сообщающими, каков отклик А на три базисных состояния прибора Т. Как только мы узнаем эту де­вятку чисел, мы сможем управиться с любой парой входных и выходных состояний j и c, если только определим каждое из них через три амплитуды перехода в каждое из трех базисных состояний (или выхода из них). Результат опыта предсказы­вается с помощью уравнения (3.32).

В этом и состоит основной вывод квантовой механики частицы со спином 1. Каждое состояние описывается тройкой чисел — амплитудами пребывания в каждом из базисных состояний (из избранной их совокупности). Всякий прибор описывается де­вяткой чисел — амплитудами перехода в приборе из одного ба­зисного состояния в другое. Зная эти числа, можно подсчитать что угодно.