в состоянии (+
S), выйдет из него в состоянии (0
R), так что сможет пройти через последний фильтр
R? Имеется стандартное обозначение для такой амплитуды:
<0R|A|+S>.
Как обычно, это надо читать справа налево: < Конец | Через | Начало>.
Если случайно окажется, это А ничего не меняет, а просто является открытым каналом, тогда мы пишем
<0R |1|+S>=<0R|+S>; (3.29)
эти два символа равнозначны. В более общих задачах мы можем заменить (+S) общим начальным состоянием j, а (0R) — общим конечным состоянием c и захотеть узнать амплитуду
A|j>.
Полный анализ прибора А должен был бы дать нам амплитуду А|j> для каждой мыслимой пары состояний j и c — бесконечное количество комбинаций! Как же сможем мы тогда дать краткое описание поведения прибора А?Это можно сделать следующим путем. Вообразим, что мы видоизменили прибор (3.28) так:
На самом деле это вовсе не видоизменение, потому что широко раскрытые приборы Т ничего нигде не меняют. Но они подсказывают нам, как проанализировать проблему. Имеется определенная совокупность амплитуд <i|+S> того, что атомы из S перейдут в состояние i прибора Т. Затем имеется другая совокупность амплитуд того, что состояние i (по отношению к Т), войдя в А, выйдет оттуда в виде состояния j (по отношению к Т). И наконец, имеется амплитуда того, что каждое состояние j пройдет через последний фильтр в виде состояния (0R). Для каждого допустимого пути существует амплитуда вида
<0R|j><j|A|i><i|+S>,
и полная амплитуда есть сумма членов, которые можно получить из всех сочетаний i и j. Нужная нам амплитуда равна
Если (О Л) и (+S) заменить общими состояниями c и j, то получится выражение такого же рода; так что общий результат выглядит так:
Теперь заметьте, что правая часть (3.32) на самом деле «проще» левой части. Прибор А полностью описан девятью числами <j|А|i>, сообщающими, каков отклик А на три базисных состояния прибора Т. Как только мы узнаем эту девятку чисел, мы сможем управиться с любой парой входных и выходных состояний j и c, если только определим каждое из них через три амплитуды перехода в каждое из трех базисных состояний (или выхода из них). Результат опыта предсказывается с помощью уравнения (3.32).
В этом и состоит основной вывод квантовой механики частицы со спином 1. Каждое состояние описывается тройкой чисел — амплитудами пребывания в каждом из базисных состояний (из избранной их совокупности). Всякий прибор описывается девяткой чисел — амплитудами перехода в приборе из одного базисного состояния в другое. Зная эти числа, можно подсчитать что угодно.