Квантовая механика I (Фейнман) - страница 58

прямой линии S на малый угол e, то и lтоже будет малым числом, ска­жем me, где m — некоторый коэффициент. Мы пишем те, по­тому что можем доказать, что l обязано быть пропорционально e. Если бы мы поставили за T новый прибор Т, тоже образую­щий с Т угол e, а с S тем самым образующий угол 2e, то по отно­шению к Т мы бы имели

а по отношению к T'

Но мы знаем, что, должны были бы получить тот же результат если бы сразу за S поставили Т'!Значит, когда угол удваивает­ся, то удваивается и фаза. Эти аргументы мы можем, естествен­но, обобщить и построить любой поворот из последовательных бесконечно малых поворотов. Мы заключаем, что К пропор­ционально j для любого угла j. Поэтому всегда можно писать l=mj.

Общий полученный нами результат состоит, следовательно, в том, что для Т, повернутого вокруг оси z относительно S на угол j,

Для угла j и для всех поворотов, которые встретятся нам в будущем, мы условимся считать, что положительным поворо­том будет поворот правого винта, который ввинчивается в по­ложительном направлении z.

Теперь остается узнать, каким должно быть m. Попробуем сперва следующее рассуждение: пусть Т повернулся на 360°; ясно, что тогда он опять очутится под нулем градусов, и мы должны будем иметь С'>+=С>+и С'>-= С>-, или, что то же самое, e>im>2>p=1. Мы получаем m=1. Это рассуждение не годится!

Чтобы убедиться в этом, допустим, что Т повернут на 180°. Если бы т было равно единице, мы получили бы

Но это просто опять получилось первоначальное состояние. Обе амплитуды по­просту умножены на -1; это возвращает нас к исходной физиче­ской системе. (Опять случай всеобщей перемены фаз.) Это озна­чает, что если угол между Т и S на фиг. 4.5, б увеличивается на 180°, то система (по отношению к Т) оказывается неотличимой от случая 0° и частицы должны опять проходить через состояние (+) прибора U. Но при 180° состояние (+) прибора U — это состояние (-х) начального прибора S. Так что состояние (+x) станет состоянием (). Но мы-то ведь ничего не делали для изменения начального состояния; ответ поэтому ошибочен. Не может быть, чтобы т=1.

Нет, все должно быть иначе: надо, чтобы только поворот на 360° (и ни на какие меньшие углы) воспроизводил то же самое физическое состояние. Это случится при m =>1/>2. Тогда и только тогда первым углом, воспроизводящим то же самое физическое состояние, будет угол φ=360°. При этом будет

Очень курьезно вдруг обнаружить, что поворот прибора на 360° приводит к новым амплитудам. Но на самом деле они не новы, потому что одновременная перемена знака ни к какой новой физике не приводит. Если кто-нибудь задумает переме­нить все знаки у всех амплитуд, подумав, что он повернулся на 360°, то это его дело — физику он получит ту же, прежнюю. Итак, наш окончательный ответ таков: если мы знаем амплиту­ды