>+и
С>-для частиц со спином
>1/
>2 по отношению к системе отсчета
S и если затем мы используем базисную систему, связанную
с Т (Т получается из
S поворотом на j относительно оси z), то новые амплитуды выражаются через старые так:
§ 4. Повороты на 180° и па 90° вокруг оси у
Теперь попробуем подобрать преобразование для поворота Т (по отношению к S) на 180° вокруг оси, перпендикулярной к оси z, скажем вокруг оси у. (Оси координат мы определили на фиг. 4.1.) Иными словами, берутся два одинаковых прибора Штерна — Герлаха и второй из них, Т, переворачивается относительно первого, S, «вверх ногами» (фиг. 4.6).
Фиг. 4.6. Поворот на 180° вокруг оси у.
Если рассматривать частицы как маленькие магнитные диполи, то частица, которая находится в состоянии (+S) (в первом приборе она избирает «верхний» путь), и во втором приборе избирает «верхний» путь, т. е. окажется по отношению к Г в минус-состоянии. (В перевернутом приборе Т переворачиваются и поле, и направление его градиента; для частицы с заданным направлением магнитного момента сила не меняется.) То, что для S было «верхом», то для Т будет «низом». Для такого относительного расположения S и Т преобразования, естественно, должны дать
Как и раньше, нельзя исключить добавочные фазовые множители; на самом деле может оказаться, что
где b и g еще подлежат определению.
А что можно сказать о повороте вокруг оси у на угол 360° Мы уже знаем ответ для поворота на 360° вокруг оси z: амплитуда пребывания в любом состоянии меняет знак. Повороты на 360° вокруг любой оси всегда приводят прибор в прежнее положение. Таким образом, результат любого поворота на 360° должен быть таким же, как и при повороте на 360° вокруг оси z,—все амплитуды должны просто переменить знак. Теперь представим себе два последовательных поворота на 180° вокруг оси у по формуле (4.20); после них должен получиться результат (4.18). Иными словами,
Это означает, что
Следовательно, g=-b+p, и преобразование для поворота на 180° вокруг оси у может быть записано так:
Рассуждения, которыми мы только что пользовались, в равной степени применимы к поворотам на 180° вокруг любой оси в плоскости ху, хотя, конечно, повороты вокруг разных осей дадут для b разные числа. Но это единственное, чем они могут отличаться. В числе b имеется известный произвол, но, как только оно определено для какой-то одной оси в плоскости ху, оно определяется и для всех прочих осей. Принято выбирать b=0 для поворотов на 180° вокруг оси у.
Чтобы показать, что свобода такого выбора у нас есть, предположим, что мы решили, что b не равно нулю для поворота вокруг оси