; тогда можно показать, что в плоскости
ху существует
какая-то другая ось, для которой соответствующая фаза
будет нулем. Найдем фазовый множитель b
>A для оси
А, образующей с осью
у угол a, как показано на фиг. 4.7,
а. Фиг. 4.7. Поворот на 180° вокруг оси А (а) эквивалентен повороту на 180° вокруг оси у (б), за которым следует поворот вокруг оси z' (в).
(Для удобства на рисунке угол а отрицателен, но это неважно.) Если теперь мы возьмем прибор Т, первоначально направленный гак же, как и S, а потом повернем его вокруг оси А на 180°, то его оси — назовем их х", у", z"— расположатся так, как на фиг. 4,7, а. Амплитуды по отношению к Т тогда станут
Но той же самой ориентации можно добиться двумя последовательными поворотами, показанными на фиг. 4.7, б и в. Возьмем сначала прибор U, повернутый по отношению к S на 180° вокруг оси у. Оси х', у' и z' прибора U будут такими, как на фиг. 4.7, б, а амплитуды по отношению к U будут даваться формулой (4.22).
Заметьте теперь, что от U к T можно перейти, повернув прибор U вокруг «оси z», т. е. вокруг z', как показано на фиг. 4.7, в. Из рисунка видно, что требуемый угол вдвое больше угла а, но направлен в обратную сторону (по отношению к z"). Используя преобразование (4.19) с j=-2a, получаем
Подставляя (4.22) в (4.24), получаем
Эти амплитуды, конечно, должны совпасть с полученными в (4.23). Значит, b>Aдолжно быть связано с a и b формулой
b>A=b-a. (4.26) Это означает, что если угол a между осью А и осью у (прибоpa S) равен b то в преобразовании поворота на 180° вокруг оси А будет стоять b>A=0.
Но коль скоро у какой-то из осей, перпендикулярных к оси z, может оказаться b=0, то ничто не мешает принять эту ось за ось у. Это всего лишь вопрос соглашения, и мы примем это в общем случае. Итог: для поворота на 180° вокруг оси у мы имеем
Продолжая размышлять о поворотах вокруг оси у, перейдем теперь к матрице преобразования для поворотов на 90°. Мы в состоянии установить ее вид, оттого что знаем, что два последовательных поворота на 90° вокруг одной и той же оси — это то же самое, что один поворот на 180°. Напишем преобразование для 90° в самой общей форме:
Второй поворот на 90° вокруг той же оси обладал бы теми же коэффициентами:
Подставляя (4.28) в (4.29), получаем
Однако из (4.27) нам известно, что
так что должно быть
(4.31)
Этих четырех уравнений вполне хватает, чтобы определить все наши неизвестные а, b, с и d. Сделать это нетрудно. Посмотрите на второе и четвертое уравнения. Вы видите, что a>2=d>2, откуда либо a=d, либо a=-d. Но последнее отпадает, потому что тогда не выполнялось бы первое уравнение. Значит,