чего-то в этой вещи, то ответ от времени не зависит. Хотя сами
амплитуды от времени зависят, но если энергия
определенная, они изменяются как мнимая экспонента и абсолютное значение (модуль) их не меняется.
Вот почему мы часто говорим, что атом на определенном энергетическом уровне находится в стационарном состоянии. Если вы что-то внутри него измеряете, вы обнаруживаете, что ничего (по вероятности) во времени не меняется. Чтобы вероятность менялась во времени, должна быть интерференция двух амплитуд при двух разных частотах, а это означало бы, что неизвестно, какова энергия. У предмета были бы одна амплитуда пребывания в состоянии с одной энергией и другая амплитуда пребывания в состоянии с другой энергией. Так в квантовой механике описывается что-то, если поведение этого «чего-то» зависит от времени.
Если имеется случай, когда смешаны два различных состояния с разными энергиями, то амплитуды каждого из двух состояний меняются со временем согласно уравнению (5.2), скажем, как
И если имеется комбинация этих двух состояний, то появится интерференция. Но заметьте, что добавление к обеим энергиям одной и той же константы ничего не меняет. Если кто-то другой пользовался другой шкалой энергий, на которой все энергии сдвинуты на константу (скажем, на А), то амплитуды оказаться в этих двух состояниях, с его точки зрения, были бы
Все его амплитуды оказались бы умноженными на один и тот же множитель
ехр[-i(A/h)/t], и во все линейные комбинации, во все интерференции вошел бы тот же множитель. Вычисляя для определения вероятностей модули, он пришел бы к тем же ответам. Выбор начала отсчета на нашей шкале энергий ничего не меняет; энергию можно отсчитывать от любого нуля. В релятивистских задачах приятнее измерять энергию так, чтобы в нее входила масса покоя, но для многих других нерелятивистских целей часто лучше вычесть из всех появляющихся энергий стандартную величину. Например, в случае атома обычно бывает удобно вычесть энергию М>sс>2, где М>s— масса отдельных его частей, ядра и электронов, отличающаяся, конечно, от массы самого атома. В других задачах полезно бывает вычесть из всех энергий число M>gc>2, где M>g— масса всего атома в основном состоянии; тогда остающаяся энергия есть просто энергия возбуждения атома. Значит, порой мы имеем право сдвигать, наш нуль энергии очень и очень сильно, и это все равно ничего не меняет (при условии, что все энергии в данном частном расчете сдвинуты на одно и то же число). На этом мы расстанемся с покоящимися частицами.
§ 2. Равномерное движение