Такой символ не имеет близкого аналога в векторной алгебре. (Он ближе к тензорной алгебре, но эта аналогия не так уж полезна.) Мы видели в гл. 3 [формула (3.32)], что (6.16) можно переписать так:
Это пример двукратного применения основного правила (6.9).
Мы обнаружили также, что если вслед за прибором А по ставить другой прибор 5, то можно написать
Это опять-таки следует прямо из предложенного Дираком метода записи уравнения (6,9). Вспомните, что между В и A всегда можно поставить черту (|), которая ведет себя совсем как множитель единица.
Кстати говоря, об уравнении (6.17) можно рассуждать и иначе. Предположим, что мы рассуждаем о частице, попадающей в прибор А в состоянии j и выходящей из него в состоянии y. Мы можем задать себе такой вопрос: можно ли найти такое состояние y, чтобы амплитуда перехода от yк c тождественно совпадала с амплитудой A|j>?Ответ гласит да. Мы хотим, чтобы (6.17) заменилось уравнением
Конечно, этого можно достичь, если взять
что и определяет собой y. «Но оно не определяет собой y,— скажете вы,— оно определяет только <i|y>». Однако все же определяет y; ведь если у вас есть все коэффициенты, связывающие y с базисными состояниями i, то y определяется однозначно. И действительно, можно поупражняться с нашими обозначениями и записать (6.20) в виде
А раз это уравнение справедливо при всех г, то можно просто писать
Теперь мы вправе сказать: «Состояние y — это то, что получается, если начать с j и пройти сквозь аппарат A».
Еще один, последний пример полезных уловок. Начинаем опять с (6.17). Раз это уравнение соблюдается при любых c и j, то их обоих можно сократить! Получаем
Что это значит? Только то, что получится, если вернуть на свои места j и c. В таком виде это уравнение «недокончено» и неполно. Если умножить его «справа» на |j>, то оно превращается в
а это снова то же уравнение (6.22). В самом деле, мы бы могли просто убрать из (6.22) все j и написать
Символ А — это не амплитуда и не вектор; это вещь особого рода, именуемая оператором. Он — нечто, что «оперирует» над состоянием, чтобы создать новое состояние; уравнение (6.25) говорит, что |y)> — это то, что получается, если А действует на |j>. Это уравнение тоже нужно считать недоконченным, открытым, пока слева оно не умножится на какое-то «брэ», скажем на
Оператор А, разумеется, полностью описывается тем, что за дается матрица амплитуд <i|A|j>;ее также пишут в виде А>ij— через любую совокупность базисных векторов.
Все эти математические обозначения на самом деле ничего нового не вносят. Единственный резон, почему мы их ввели,— мы хотели показать, как пишутся обрывки уравнений, потому что во многих книжках вы встретите уравнения, написанные в неполном виде, и нет причин вам пугаться, увидев их. Если вы захотите, вы всегда сможете дописать те части, которых не хватает, и получить уравнение, связывающее числа. Оно будет выглядеть более привычно.