Эктор Левек, специалист по информационным технологиям и робототехнике из Университета Торонто (University of Toronto), приводит пример простого вопроса, легко находящего ответ у людей, но над которым компьютер может задуматься надолго.
Большой шар падает на стол и пробивает его, потому что он сделан из пенопласта.
Что сделано из пенопласта – большой шар или стол?
Мы даем правильный ответ без всяких усилий, потому что понимаем, что такое пенопласт, знаем, что случается, когда мы что-то бросаем на стол, как выглядит стол и что подразумевается под словом «большой». Мы мгновенно схватываем контекст ситуации и смысл слов, которыми она описана. Компьютер, лишенный всякого понимания реального мира, вынужден считать язык данного высказывания абсолютно двусмысленным. Он ограничен своими алгоритмами. «Сведение интеллекта к статистическому анализу больших наборов данных может привести нас, – говорит Левек, – к системам, впечатляющим публику своей результативностью, но являющихся, по сути, идиотами, проявляющими незаурядные способности в какой-то узкой сфере». Компьютеры могут великолепно играть в шахматы или в «Свою игру», безошибочно распознавать лица или выполнять другие, четко очерченные ментальные задания, но они совершенно безнадежны вне границ этих заданий [46]. Точность работы компьютеров удивительна, но это всего лишь симптом узости их восприятия.
Даже в том, что касается вопросов, требующих вероятностных ответов, компьютеры не всегда оказываются на высоте. Скорость и очевидная точность их вычислений могут маскировать неполноту и погрешности обрабатываемых данных, не говоря уже о возможном несовершенстве алгоритмов обработки. Любая большая база данных содержит, наряду с надежными корреляциями, массу ложных корреляций. Несложно впасть в заблуждение из-за случайного совпадения или превратной ассоциации [47]. Более того, когда какой-то конкретный набор данных является основанием для принятия важных решений, эти сведения и их анализ становятся объектом не всегда честных манипуляций. В поисках финансовых, политических или социальных выгод люди часто будут пытаться подправить систему. Как пояснил в своей знаменитой, напечатанной в 1976 году статье Дональд Кэмпбелл: «Чем в большей мере какой-либо количественный социальный показатель используется для принятия социально значимых решений, тем в большей степени он становится объектом коррупционного давления, и тем в большей степени будет он искажать картину социальных процессов, для отслеживания которых его предполагали использовать» [48].