Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной? (Ибаньес) - страница 27

 = 0, то справедлива евклидова геометрия на плоскости. Если К > 0, то мы имеем модель эллиптической геометрии (например, на сфере) с гипотезой тупых углов. В этом случае первый постулат не выполняется, так как через диаметрально противоположные точки проходит бесконечное количество геодезических линий. Диаметрально противоположные точки сферы можно отождествить, но тогда получится абстрактная поверхность вне трехмерного евклидова пространства. Если К < 0, то мы имеем модель гиперболической геометрии (псевдосферу) с гипотезой острых углов. Эта модель тоже не является геодезически полной, и, следовательно, ее тоже приходится обобщать до абстрактной поверхности вне трехмерного евклидова пространства.



Вклад Римана

В любом случае революция, начатая Гауссом, проходила в трехмерном евклидовом пространстве. Многомерные случаи были еще впереди, а пока обычная аналитическая геометрия занималась изучением координатных пространств первых трех измерений (на прямой, на плоскости и в трехмерном пространстве). Как мы уже говорили, признать существование высших измерений было нелегкой задачей для ученых и философов. Однако в середине XIX в. многомерные пространства появились как естественное продолжение аналитической геометрии. Одной из двух важных работ, связанных с этим, была статья «Главы из аналитической геометрии п измерений» английского математика Артура Кэли (1821–1895). Второй базисной работой стали «Лекции о линейном расширении» немецкого математика и философа Германа Грассмана (1809–1877).

Потом появился доклад Римана, представленный в Гёттингенском университете, «О гипотезах, лежащих в основании геометрии». Он содержал великие геометрические идеи:

1. Понятие n-мерного геометрического пространства (называемого дифференцируемым многообразием), обобщающее понятие поверхности, данное Гауссом.

2. Понятие метрического тензора, обобщающее понятие расстояния, и изучение метрических отношений на дифференцируемых многообразиях (рождение геометрии Римана).

3. Обобщение понятия кривизны и других элементов внутренней геометрии поверхности на римановы n-мерные многообразия.

Понятие n-мерного дифференцируемого многообразия включает в себя тот факт, что локально его можно определить с помощью n локальных координат x>1, …, x>n, а также законов их преобразований. Геометрическое пространство (дифференцируемое многообразие) необязательно связано с реальным пространством, но может быть любым объектом, в котором выполняются общие условия, заданные определением.

Более того, Риман отказался от обычного математического и философского подхода, согласно которому понятие пространства подразумевает расстояние, заданное как обычное евклидово расстояние. Этим он разделил понятия пространства (п-мерного дифференцируемого многообразия) и расстояния, называемого метрическим тензором Римана. Таким образом, в одном и том же пространстве могут существовать три расстояния, с которыми, конечно, связаны различные значения кривизны. Поэтому геометрия Римана является неевклидовой геометрией в гораздо более общем смысле, чем разработанная Лобачевским и Бойяи, так как она подразумевает большее количество измерений и ее кривизна может принимать разные значения в разных точках.