3. ЧЕРНЫЕ ДЫРЫ ОТКРЫТЫ И ОТВЕРГНУТЫ Физическое пространство
/ Экваториальная Гиперпространство плоскость |
---|
|
3.3. Кривизна трехмерного пространства внутри и вокруг звезды (слева вверху) и ее представление на вложенной диаграмме (справа внизу). Эта кривизна предсказывается шварцшильдовским решением уравнения Эйнштейна |
(рис. 3.3, слева) невозможно. Это искривление выгибает лист, но на этом рисунке изгиб не виден. Однако мы можем исследовать форму искривления, если будем проводить геометрические измерения в нашем трехмерном пространстве, точно так же, как их делали плос-катики в своей двумерной вселенной. Такие измерения покажут, что существуют прямые, изначально параллельные линии, которые пересекаются в центре звезды, что длина любой окружности вблизи или внутри звезды меньше, чем ее диаметр, умноженный на число п, и что сумма внутренних углов любого треугольника в этой области больше 180°. Все эти свойства искривленного пространства предсказываются шварцшильдовским решением уравнения Эйнштейна.
Чтобы представить наглядно шварцшильдовскую кривизну, мы можем, подобно плоскатикам, мысленно перенести лист из искривленного трехмерного пространства нашей реальной Вселенной в воображаемое плоское гиперпространство (см. справа внизу на рис. 3.3). В этом не искривленном гиперпространстве лист может сохранить свою форму, лишь выгнувшись в том месте, где была звезда. Такие изображения двумерных поверхностей, взятые из нашей искривленной Вселенной и помещенные в гипотетическое плоское трехмерное пространство, и называются вложенными диаграммами.
Не следует поддаваться искушению отождествить третье измерение гиперпространства с третьим пространственным измерением нашей Вселенной. Третье измерение в гиперпространстве не имеет к измерениям нашего пространства никакого отношения. Это измерение, в которое мы не можем перейти и из которого не можем
получить никакой информации; оно чисто вымышленное. Зато с его помощью мы сможем наглядно представить геометрию нашего искривленного пространства, пространства, где существуют черные дыры, гравитационные волны, сингулярности и червоточины (см. главы 6, 7, 10, 13 и 14).
Как показывает вложенная диаграмма на рис. 3.3, шварцшильдов-ская геометрия листа, взятого из экваториальной плоскости звезды, качественно такая же, как и у двумерного пространства и в нашем примере с плоскатиками: внутри звезды она искривлена и имеет чашеобразную форму, вдали от звезды она становится плоской. Так же как и большой круг в углублении двумерного пространства (рис. 3.2), окружность звезды, деленная на ее диаметр, здесь оказывается меньше, чем п. Для нашего Солнца отношение длины окружности к диаметру оказывается меньше п на несколько миллионных долей; другими словами, пространство внутри Солнца плоское с точностью до нескольких долей миллиона. Тем не менее, если Солнце, сохраняя свою массу, будет становиться все меньше и меньше, кривизна внутри будет становиться больше и больше, впадина на вложенной диаграмме (рис. 3.3) будет становиться все глубже и глубже, и отношение длины его окружности к диаметру может стать гораздо меньше п.