Если вас тоже интересует дальнейшая судьба несчастного животного, я позволю себе рекомендовать вам статью Филиппа Яма «Воскрешение шредингеровской кошки» из журнала «Сайентифик америкэн». О задумке С. Бозе вы там, правда, еще ничего не найдете, это самое последнее слово в истории знаменитой кошки, но зато узнаете, что кроме принципиального значения эта история имеет еще и немаловажное прикладное. Ведь если перевернуть наш эксперимент, то кошку в ящике можно рассматривать как своего рода измерительный прибор, «показания» которого (жизнь или смерть) позволяют узнать, в каком из двух возможных состояний «в действительности» находится квантовая часгица (в данном случае – радиоактивный атом). И тогда – через кошку – открывается путь к детальному исследованию того, каким именно образом процесс измерения разрушает сложное состояние квантовой частицы («наложение состояний») и превращает его в простое (атом распался или не распался). Заменяя измученное животное разного рода реальными измерительными приборами все меньшего и меньшего размера, несколько групп физиков уже продвинулись в понимании этого процесса, создали ряд теорий различной степени сложности, предлагающих то или иное объяснение всех нюансов этого процесса, и попутно показали (вот оно, прикладное значение!), какие ограничения имеются на пути создания вожделенных, но пока еще не реализованных «квантовых компьютеров», которые могли бы использовать способность квантовых частиц переходить из одного состояния в другое и наоборот. Как показали все эти опыты со «шредингеровскими кошками», весьма серьезные ограничении.
Вот так. А вы, небось, думали, что кошка может только мурлыкать.
Одним из глобальных научных событий прошедшего столетия, порожденных квантовой механикой, физики считают создание лазера. В сферу его многочисленных применений сегодня входят и тончайшие исследовании поверхностей, приносящие информацию о взаимодействии молекул и атомов и их внутреннем устройстве
Путь к квантовому компьютеру выстлан золотом
Сотрудники Института экспериментальной физики при Инсбрукском университете – руководил ими Йорг Шмидмайер – разработали интегральную микросхему, в которой движутся не электроны, а атомы. Под действием магнитного поля они перемещаются вдоль узких бороздок, играющих роль токопроводящих дорожек. По мнению ученых, подобная микросхема может стать основным элементом квантовых компьютеров.
«Атомарный чип» состоял из пластины размером 2x2 сантиметра и толщиной 600 микрометров. На эту пластину, изготовленную из арсенида галлия, нанесли слой золота толщиной 2,5 микрометра. В золоте вытравили «канавку» шириной 10 микрометров; она служила проводником для атомов. На поверхность золота направили луч холодных атомов лития. Чтобы атомы подольше находились близ поверхности микросхемы, пришлось приложить определенные усилия. Сперва частицы заперли с помощью магнитооптической ловушки – ее стены «возвели» из лазерных лучей и магнитных полей.