Такие числа в первой сотне это: 1, 4, 9, 16, 25, 36, 49, 64, 81 и 100. Ответ на задачу: открытыми будут десять шкафчиков.
? У вас есть два куска бикфордова шнура…
В более простой версии этой головоломки, которую также используют в интервью, спрашивают, как отмерить тридцать минут при помощи тех же бикфордовых шнуров. Поскольку она легче, с нее и начнем.
Возможностей немного: если вы подожжете оба шнура, вы не узнаете, сколько прошло времени, пока огонь не добежит до конца, а это будет шестьдесят минут. Никакого прока.
Обратите внимание на то, что вы можете найти середину длины каждого из шнуров без линейки, просто сложив их пополам. Но если вы подожжете любой шнур в его середине, вы также ничего не узнаете, потому что он горит неравномерно, следовательно, огонь доберется до его концов не одновременно. Хотя сумма времени, за которое сгорают обе половины, – шестьдесят минут, вам это никак не поможет. Если взять предельный случай, то может оказаться, что правая половина шнура горит сверхбыстро – всего одну минуту, а левая, напротив, сверхмедленно – целых пятьдесят девять минут. Это не поможет вам узнать, когда прошло тридцать или сорок пять минут.
Исчерпывает ли это все возможности? Нет. Умная идея – положить два шнура крест-накрест, в форме буквы Х. Положите их так, чтобы они пересекались в середине длины каждого из шнуров, прикасаясь друг к другу. Тогда, если вы подожжете один из концов буквы Х, огонь доберется до середины, а дальше пойдет сразу в трех направлениях. Все, чего мы добьемся таким способом – второй шнур начнет гореть с середины своей длины (но мы уже знаем, что это нам ничего не дает), и мы не будем знать, сколько времени пройдет (то есть за какое время огонь доберется до пересечения). Что в лоб, что по лбу!
Исчерпаны ли все возможности? Нет: вы можете поджечь бикфордов шнур сразу с обоих концов.
Скорость, с которой движется огонь, сама по себе для нас не важна, и огоньки, двигающиеся с двух концов шнура навстречу друг другу, совсем не обязательно встретятся в середине, но где-то они обязательно встретятся. Когда они встретятся, это будет означать, что каждый из них горел время, равное половине от шестидесяти минут, то есть тридцать минут.
Отлично! Это решение для более легкой версии задачи, которое также позволит нам решить и 45-минутную версию. Итак, поджигая один из шнуров с обоих концов, мы можем отмерить тридцать минут. Если бы нам удалось при помощи второго отрезка шнура отмерить еще пятнадцать минут, мы бы решили головоломку.
Мы уже знаем, что можем уменьшить вдвое время горения любого отрезка шнура, поджигая его одновременно с двух концов. Если бы у нас был отрезок, сгорающий за тридцать минут, мы могли бы поджечь его с обоих концов в тот самый момент, когда догорел бы первый шестидесятиминутный отрезок, подожженный с двух концов. Это как раз и дало бы нам недостающие пятнадцать минут, и мы бы получили искомые сорок пять минут.