Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? (Фаус) - страница 49

Копенгагенская интерпретация основывается на трех базовых принципах: принципе дополнительности, вероятностной трактовке волновых функций и принципе неопределенности Гейзенберга. Мы уже упоминали о двух последних, поэтому скажем несколько слов о принципе дополнительности. Бор говорил, что классическая теория подтверждается результатами экспериментов, проведенных с помощью измерительных приборов: весов, термометров, вольтметров и др. При изучении материи на атомном уровне классическая теория достигла предела, и для описания явлений в этом масштабе потребовалось применить законы квантовой механики. Бор подчеркнул, что квантовая механика изменила классическую физику, однако ее корректность подтверждается все теми же измерительными приборами. Иными словами, хотя квантовые явления представляют собой нечто принципиально новое, показания приборов по-прежнему трактуются согласно принципам классической физики, так как, по выражению Бора, только классическая физика представляет собой «язык, лишенный двусмысленности». При описании результатов наблюдений в ее терминах можно избежать логических парадоксов, вызванных корпускулярноволновым дуализмом. Понятия частицы и волны, определенные в классической физике, являются взаимоисключающими, однако в квантовой физике без них нельзя обозначить свойства объекта, который ведет себя как частица или как волна в зависимости от проводимого эксперимента. Следовательно, эти понятия дополняют друг друга. Принцип дополнительности действует не только для частиц и волн, но и, например, для положения и скорости квантового объекта.

Эйнштейн в числе прочих физиков не был готов согласиться с этим выводом, и его дискуссии с Бором, посвященные данным вопросам, оказались крайне продуктивными. Эйнштейн описал мысленные эксперименты (то есть возможные логически, но нереализуемые на практике из-за технических ограничений), которые доказывали некорректность интерпретации Бора, однако Бор неизменно опровергал все возражения оппонента. Больше всего проблем вызвал так называемый парадокс Эйнштейна – Подольского – Розена, опубликованный в 1935 году. Представьте себе две частицы, которые появились в одной точке и начали движение в противоположных направлениях, например в результате распада какой-либо частицы. Импульсы этих частиц равны и имеют противоположные направления. Если мы измерим положение одной частицы и импульс другой в момент, когда они настолько удалены друг от друга, что какое-либо взаимодействие между ними отсутствует, то сможем одновременно определить обе эти величины для каждой из частиц по отдельности. Следовательно, принцип Бора, согласно которому одновременно измерить эти величины с произвольной точностью нельзя, не выполняется.