Вскоре немецкие и американские физики одновременно обнаружили альтернативу U235. Когда неустойчивый изотоп U238 захватывает нейтрон, то превращается в изотоп U239. При распаде этого изотопа образуется элемент с Z = 93 – сегодня он называется нептуний-239 (Np239). Карл Фридрих фон Вайцзеккер подготовил секретный доклад, в котором указал, что этот элемент также можно использовать для изготовления бомбы. Важное отличие Np239 от U235 заключалось в том, что нептуний можно было получить химическими методами. Np239 распадается за несколько дней, а результатом распада является элемент с Z = 94, известный сегодня как плутоний Pu239. Он также нестабилен, однако его период полураспада составляет примерно 25 000 лет, так что получение и хранение элемента не представляет особых трудностей и позволяет при необходимости применять в военных целях гражданские атомные реакторы. В конце августа 1941 года немецкие ученые увидели, что перед ними, как позднее вспоминал Гейзенберг, «открылся путь, ведущий к атомной бомбе». Но чтобы следовать этим путем, требовался работающий ядерный реактор, а построить его никак не удавалось.
В декабре 1941 года произошли два события, которые повлияли на планы немецких военных: в войну вступили Соединенные Штаты Америки, а продвижение немецких войск на Восточном фронте замедлилось. План блицкрига провалился, и теперь победа зависела от имевшихся промышленных и трудовых ресурсов. С декабря 1941 по июнь 1942 года руководители немецкой ядерной программы провели несколько совещаний с властями, чтобы принять окончательное решение о создании бомбы. Гейзенберг участвовал во всех совещаниях и неизменно заявлял одно и то же: для создания нового оружия требуется несколько лет. В числе основных препятствий он называл технические сложности, связанные с необходимостью постройки реактора и выделением обогащенного урана U235. На последней встрече министр вооружений Альберт Шпеер пришел к выводу, что до окончания войны в лучшем случае удастся построить реакторы для кораблей и подводных лодок, поэтому решил уделить основное внимание проектам Вернера фон Брауна по созданию крылатых ракет. Круг работ в рамках ядерной программы был ограничен созданием реактора. Немалую роль в принятии решения сыграла также убежденность немецких ученых и военных в том, что Германия опережает союзников в исследованиях, посвященных делению ядра, так что атомная бомба не должна оказать определяющего влияния на исход войны.
Энергия, высвобождаемая при делении ядра
Во время химической реакции происходит обмен слабо связанными электронами между атомами и молекулами. Энергия обычно измеряется в электрон-вольтах (эВ). Один электрон-вольт определяется как энергия, получаемая электроном при разности потенциалов в 1 В, и равен 1,6 • 10-19 Дж. На практике эти величины выражаются в кДж/моль (килоджоулях на моль). Напомним, что 1 моль вещества содержит 6 • 1023 атомов или молекул (так называемое число Авогадро). К примеру, при сжигании метана выделяется в среднем 800 кДж/моль энергии, что соответствует примерно 8 эВ на молекулу. Энергия, высвобождаемая при ядерных реакциях, измеряется в МэВ, то есть в миллионы раз превышает энергию, которая выделяется при химических реакциях. Используем знаменитое уравнение Эйнштейна Е = m • с² , которое выражает эквивалентность массы и энергии, и вычислим энергию, высвобождаемую при делении ядра: U236 -› Ba141 + Kr92 + 3n. В атомных единицах массы (а. е. м.) масса исходного ядра U236 равна 236,0456 а.е. м., сумма масс продуктов реакции равна 140,9144 (Ba141)+91,9262 (Kr92)+3 • 1,0087 (3 нейтрона)=235,8667 а.е. м.