Ледники в горах (Серебрянный, Орлов) - страница 23

Хотя ледники сильно растрескиваются, преодолевая крупные неровности ложа, все же многочисленные потоки льда, спускающиеся вниз по долинам, повторяют их изгибы. Следовательно, лед, будучи твердым веществом, обладает способностью деформироваться.

Когда лед находится при температуре плавления, он достаточно рыхлый и кристаллы легко деформируются, особенно вдоль базисных плоскостей. Основным механизмом движения ледников является пластическое течение (на что обращал внимание еще французский ученый А. Бордье в 1773 г.), создаваемое весом самого льда. По реологическим свойствам лед не похож ни на вязкую жидкость, ни на хрупкий материал. Скорость деформации льда при определенной нагрузке сначала нарастает, а затем стабилизируется.

Выяснилось также, что лед не обладает постоянной вязкостью, а представляет собой лишь частично пластичное вещество, которое деформируется даже при медленном сползании под нагрузкой. Подобная пластичность льда хорошо заметна благодаря тому, что лед быстро приспосабливается к форме подстилающей поверхности. Это четко показали многочисленные наблюдения в туннелях. Впервые Дж. Мак-Колл для небольшого карового ледника Весле-Скаутбреен в Норвегии установил, что в базальных слоях отражается характер поверхности ригеля: приобретенные борозды прослеживаются на 50 м. При этом скорость движения достигает 3 м/год. Следовательно, борозды сохраняются в течение 15 лет. X. Карол изучал пластические деформации льда в гроте под ледником Обер-Гриндельвальд на глубине 50 м. Лед, прижатый к выступу ложа, двигался быстрее, и его связность ослаблялась. В. Тикстоун описал аналогичные пластичные нарушения под ледником Эстердальсисен в Северной Норвегии.

Чтобы разобраться в природе пластического течения, гляциологи проводят лабораторные исследования кристаллической структуры льда. Опыт Дж. Глена в поляризованном свете показал, что деформации кристаллов ледникового льда такие же, как у мягкой стали, нагретой до температуры 600° С. Не вдаваясь в подробное рассмотрение структуры льда, отметим, что она в целом напоминает структуру металла гексагональной сингонии. Плоскость слоя гексагональных колец называется базисной плоскостью кристалла. Выяснилось, что течение в кристаллах льда происходит вдоль плоскостей, параллельных основанию гексагонального кристалла льда. Такой вид деформаций, по мнению американского ученого Р. Флинта, легко воспроизвести, подснимая колоду карт. В данном случае плоскость скольжения карт будет аналогична базисной плоскости кристалла.

При очень больших напряжениях реология льда меняется — скорость деформации увеличивается. Естественно, деформация поликристаллического льда существенно отличается от деформации единичного кристалла. В целом пластическое течение льда сводится к сумме деформаций мгновенных скольжений вдоль базисных плоскостей миллиардов ледяных кристаллов. Кроме того, большое значение имеет движение самих кристаллов, сопровождающееся процессами рекристаллизации. Способность поликристаллического льда деформироваться зависит от ориентировки индивидуальных кристаллов относительно приложенного направления. Согласно структурным исследованиям кристаллы льда, как правило, ориентируются по направлению движения ледников и постепенно увеличиваются в размерах за счет менее удачно ориентированных соседей. Нарастание структурной упорядоченности кристаллов — характерный признак пластического течения льда.