и понятие, противоречащее предикату (
не – предикат). Потом следует установить их распределенность, и из получившейся схемы будут вытекать четыре суждения: одно исходное и три результата преобразований. Главное, помнить, что распределенный термин соответствует квантору
все, а нераспределенный – квантору
некоторые, и также, что соприкасающиеся на схеме круги соответствуют связке
является, а несоприкасающиеся – связке
не является. Например, требуется совершить три операции преобразования с суждением:
Все учебники являются книгами. Изобразим субъект (
учебники), предикат (
книги) и не – предикат (
не книги) кругами Эйлера и установим распределенность этих терминов:
Получившуюся схему можно прочитать четырьмя способами:
1. Все учебники являются книгами (исходное суждение).
2. Некоторые книги являются учебниками (обращение).
3. Все учебники не являются не книгами (превращение).
4. Все не книги не являются учебниками (противопоставление предикату).
Рассмотрим еще один пример. Надо преобразовать тремя способами суждение: Все планеты не являются звездами. Изобразим кругами Эйлера субъект (планеты), предикат (звезды) и не – предикат (не звезды). Обратите внимание на то, что понятия планеты и не звезды находятся в отношении подчинения: планета – это обязательно не звезда, но небесное тело, которое не является звездой – это не обязательно планета. Установим распределенность этих терминов:
Получившуюся схему можно прочитать четырьмя разными способами:
1. Все планеты не являются звездами (исходное суждение).
2. Все звезды не являются планетами (обращение).
3. Все планеты являются не звездами (превращение).
4. Некоторые не звезды являются планетами (противопоставление предикату).
В заключение еще раз отметим, что частноотрицательные суждения (О) не поддаются обращению. Из этого следует, что частноутвердительные суждения (I) не поддаются операции противопоставления предикату, которая состоит из последовательно проведенных превращения и обращения. Частноутвердительное суждение (I) в результате превращения становится частноотрицательным суждением (О), которое следует подвергнуть обращению, что сделать невозможно по причине необращаемости суждений вида О.
2.8. Отношения между суждениями
Простые суждения видов А, I, Е, О делятся на сравнимые и несравнимые. Сравнимые суждения имеют одинаковые субъекты и предикаты, но могут отличаться кванторами и связками, а несравнимые суждения имеют различные субъекты и предикаты. Например, суждения: Все школьники изучают математику и Некоторые школьники не изучают математику