Красота в квадрате (Беллос) - страница 70

 — это расстояние от произвольной точки P до одного фокуса, а b — расстояние от точки P до другого фокуса. Гипербола — это геометрическое место точки P, для которой разность (ab) имеет постоянное значение. Кроме того, гиперболу можно определить и через поведение лучей света. Лучи света от источника, находящегося в одном из фокусов, отражаются вовне гиперболического зеркала в направлении, противоположном другому фокусу, как показано на нижнем рисунке. Телескоп Ричи-Кретьена, наиболее распространенный тип больших астрономических телескопов, содержит именно гиперболические зеркала.

Геометрия гиперболы

Выше я уже предложил вам способы построения эллипса и параболы, поэтому считаю своим долгом сделать это и для гиперболы. На этот раз нам предстоит создать трехмерную модель. Мы сделаем гиперболоид — фигуру, напоминающую популярный в 1970-х годах пластиковый табурет, имеющий форму, которую можно получить посредством вращения гиперболы вокруг своей оси, как показано ниже на рисунке слева. Для создания данной конструкции нам понадобятся два круга из картона и несколько кусков проволочной нити (струны). На первом этапе, как показано на среднем рисунке, необходимо протянуть нить от одного круга к другому таким образом, чтобы образовать фигуру в форме цилиндра. На втором этапе (рисунок справа) нужно повернуть один из кругов. Полученная в итоге фигура и есть гиперболоид.

Гиперболоид и способ его построения с помощью проволочной нити

В XVII веке молодой английский профессор астрономии Кристофер Рен увидел в витрине магазина плетеную корзину, напоминающую своими очертаниями ту модель, которая показана на рисунке выше [16]. Эта корзина навела его на мысль об одном поразительном свойстве гиперболоида: имея гладкую изогнутую поверхность, он состоит исключительно из прямых линий. Рен сразу же понял, как можно использовать это свойство для создания гиперболоидов из твердого материала с помощью прямой лопатки. Представьте себе, что на гончарном круге находится кусок глины цилиндрической формы. Разместите лопатку по диагонали к цилиндру таким образом, чтобы она немного погрузилась в глину. Удерживая лопатку в одном положении, сделайте один оборот гончарного круга — и цилиндр из глины превратится в гиперболоид. Рен заинтересовался изготовлением гиперболоидных линз для телескопов. Он даже не подозревал, что спустя столетия его открытие данного свойства гиперболоида найдет свое применение в архитектуре — области, в которой сам Рен получит впоследствии гораздо большую известность.

В XIX веке французский преподаватель математики Теодор Оливье создал несколько моделей гиперболоидов и других трехмерных конических фигур для использования в качестве учебных пособий [17]. Сделанные из каркасов из дерева и металла, а также цветных проволочных нитей (струн), они стали весьма популярны в университетах. Некоторые из моделей Оливье были выставлены в лондонском Музее истории науки. В 1930-х годах британский художник Генри Мур посетил этот музей и пришел в такой восторг от увиденных моделей, что начал использовать проволочные нити в своих скульптурах. «Меня взволновало не научное назначение моделей, а возможность посмотреть сквозь эти струны, как через птичью клетку, и увидеть одну форму внутри другой», — объяснил он. Струнные модели Оливье — прекрасные объекты, завораживающие подобно оптической иллюзии, представляя кривые поверхности, образованные, как становится очевидным при ближайшем рассмотрении, прямыми линиями. (В конце XIX столетия личную коллекцию моделей Оливье выкупил Колледж Союза в городе Скенектади, в котором много лет спустя Арт Фриго создал свою игру «эллиптипул».)