Гаусс говорил о Бойяи: «Он был самым сложным по духу из тех, кого я когда-либо знал». Бойяи рассказывал об этой дружбе более подробно: «Нас объединяли страсть к математике и наши мысли, и мы гуляли долгие часы в тишине, каждый занятый собственными размышлениями».
Бойяи был единственным, кто смог понять мои метафизические критерии математики.
Карл Фридрих Гаусс о своем друге Вольфганге Бойяи
В течение трех лет в Гёттингене Гаусс совершенно самостоятельно формировал свою образовательную программу. В конце 1798 года он по неясным причинам покинул университет, но к этому времени уже успел разработать наиболее важные математические идеи, которые будут публиковаться в течение следующих 25 лет. Гаусс оставил Гёттинген, не получив диплома. Из его переписки с Бойяи мы знаем, что по просьбе герцога Брауншвейгского ученый в 1799 году послал свою докторскую диссертацию в Хельмштедтский университет. Степень была предоставлена ему заочно, без обычного устного экзамена.
ФАРКАШ БОЙЯИ
Этот венгерский математик известен в Германии как Вольфганг Бойяи (1775-1856), и ему принадлежат в основном работы в области геометрии.
Главный труд Бойяи озаглавлен Tentamen iuventutem studiosam en elementa matheosos introducendi, и в нем прослеживается попытка ученого придать строгую и систематическую базу геометрии, арифметике, алгебре и анализу. В своей работе он изложил повторяющиеся процессы для решения уравнений. Проблема повторяющихся процессов в решении математических задач состоит в следующем: не всегда можно гарантировать, что число повторений будет конечным; когда метод может гарантировать это, говорят, что он сходящийся. Процедуры, описанные Бойяи, были именно такими. Другое важное значение его работы состоит в том, что она включала определение равенства двух плоских фигур, если обе они могут быть поделены на конечное число эквивалентных частей, что отражено в теореме Бойяи — Гервина. Сыном Вольфганга был Янош Бойяи, также математик, сфера интересов которого лежала в области неевклидовой геометрии. Гаусс признавал, что многими своими идеями в области геометрии он обязан именно Бойяи, с которым мог обсудить их и улучшить.
ПОСТРОЕНИЕ ПРАВИЛЬНОГО МНОГОУГОЛЬНИКА С 17 СТОРОНАМИ С ПОМОЩЬЮ ЛИНЕЙКИ И ЦИРКУЛЯ
Со времени прибытия в Гёттинген молодой Гаусс продолжил свои исследования о числах, начатые в Коллегии. Без сомнения, именно в ходе этих исследований, а не благодаря занятиям у Кестнера в Брауншвейге он сделал открытие, ставшее ключевым не только для карьеры математика, но и для будущего науки. Речь о методе построения правильного многоугольника с 17 сторонами с помощью линейки и циркуля.