И здесь также сущность дела затуманена античными названиями, которые мы удержали из литературного наследия греков. Геометрией называется искусство измерения, арифметикой – искусство счета. Математике Запада нечего больше делать с этими обоими видами ограничения, но она не придумала себе нового названия. Слово «анализ» выражает далеко не все.
Свои исследования античный математик и начинает и кончает единичным телом и ограничивающей его поверхностью. Мы знаем, в сущности, только абстрактный пространственный элемент точки; лишенный наглядности, возможности измерения и наименования, он представляет собою, собственно, только центр отношения. Прямая для грека есть измеримая граница, для нас – неограниченный точечный континуум. Лейбниц приводит в качестве примера для принципа бесконечно малых прямую, которую можно рассматривать как предельный случай круга с бесконечно большим радиусом; точка же оказывается опять-таки предельным случаем. Для духа античного человека квадратура круга была классической предельной проблемой. Вот что казалось греческому духу самой глубокой тайной мировой формы: превратить криволинейно ограниченные плоскости в прямоугольные и, не меняя их величины, сделать их таким образом измеримыми. Для нас стало очень простым делом – изобразить число л алгебраическими средствами, не поднимая при этом и речи о геометрических образах.
Античный математик знает только то, что он видит я осязает. Где кончается ограниченная, ограничивающая видимость – сфера его полета мысли, – там находит конец и его наука. Западноевропейский математик, как только он, освобожденный от античных предрассудков, становится самим собой, углубляется в совершенно абстрактную область бесконечного числового множества, не трех, а n измерений, внутри которого его так называемая геометрия может и часто должна обойтись без всякой помощи наглядного. Если античный человек обращается к художественному выражению своего чувства формы, то он стремится придать человеческому телу в танце и состязании, в мраморе и бронзе такое положение, в котором плоскости и контуры имели бы максимум соразмерности и выразительности. Настоящий художник Запада закрывает глаза и теряется в области бестелесной музыки, где гармония и полифония ведут к творениям величайшей «потусторонности», выходящим за пределы всех возможностей оптической определенности. Стоит только представить себе, что понимают под фигурой афинский скульптор и северный контрапунктист, и тогда станет совершенно ясной противоположность этих двух миров, двух математик. Греческая математика пользуется словом «sфma» для обозначения тела. С другой стороны, правовой язык применяет то же слово к личности в противоположность вещи («sцmata cai pragmata»; personae et res).