Закат Европы (Шпенглер) - страница 70

Феномен античного, целого, телесного числа невольно поэтому ищет отношения к телесному началу человека, к «sфma». Единица едва ли принималась как настоящее число. Она – «архе», изначальная основа числового ряда, изначало всех чисел и, следовательно, всех величин, всех мер, всякой вещественности. Ее числовой знак в кругу пифагорейцев всегда был символом материнского лона, изначала всей жизни. Двойка, первое настоящее число, которое удваивает единицу, была связана с принципом мужского начала, и ее знаком стало изображение фаллоса. Наконец, священная троица символизировала акт соединения мужчины и женщины, зачатия – и вполне понятен эротический смысл двух особенно важных для античности процессов – роста величины и порождения величины, сложения и умножения; знаком тройки было соединение двух первых чисел. Отсюда проливается новый свет на упомянутый выше миф о дерзости раскрытия иррационального. Иррациональное, выражаемое нами применением бесконечных десятичных дробей, есть разрушение органически-телесного, созидательного порядка, который был установлен богами. Нет сомнения, что пифагорейская реформа античной религии восстановила древний культ Деметры. Деметра родственна Гее, матери-земле. Есть глубокая зависимость между ее почитанием и этим возвышенным пониманием числа.

Так античный мир с внутренней необходимостью стал постепенно культурой малого. Аполлоновская душа стремилась заклясть смысл завершенного посредством принципа обозримой границы; ее «табу» направлено на непосредственную наличность и близость чуждого. Что давно прошло, что невидимо, того и нет. Грек, как и римлянин, приносил жертвы богам той страны, где ему случалось быть, – все другие исчезали из его кругозора. Как греческий язык не имеет названия для пространства – мы будем постоянно подчеркивать мощную символику таких явлений языка, – так нет у грека нашего чувства ландшафта, чувства горизонта, далей, облаков, а также понятия отечества, широко раскинувшегося и охватывающего великую нацию. Отчизна для античного человека – это то, что он мог окинуть взором со стен родного города, не больше. Что лежало по ту сторону видимой границы такого политического атома, было чуждо, даже враждебно. Здесь начинается уже страх античного существования, и это объясняет чудовищную ожесточенность, с какой эти крошечные города уничтожали друг друга. Полис – это самое маленькое из всех мыслимых государств, и его политика, ясно выраженная политика «близкого», – полная противоположность нашей дипломатии кабинетов, политике безграничного. Античный храм, если охватить его единым взором, – самое маленькое из всех классических строений. Геометрия от Архита до Эвклида – как это делает под их влиянием школьная геометрия еще и теперь – занимается маленькими, удобными для обращения фигурами и телами, и для нее, таким образом, были скрыты трудности, которые всплывают при оперировании астрономическими расстояниями, не всегда допускающими пользование Эвклидовой геометрией. Но вместе с тем тонкий античный дух как будто тогда уже предугадывал проблему неэвклидовых геометрий: возражения против известной аксиомы о параллельных, содержание которой с давних пор не удовлетворяло геометров, близко наталкивали на возможное решение вопроса. Наложения элементарного счисления, например 2 x 2 = 4, казалось само собою разумеющимся, – настолько же нам само собою разумеющимся кажется оперирование бесконечным, выходящим за пределы наглядности. Все математические взгляды, которые Западная Европа отвергала или принимала, с глубокой необходимостью подчинялись языку форм счисления бесконечно малых задолго до того, как было открыто само дифференциальное счисление. Арабская алгебра, индийская тригонометрия, античная механика были сразу включены в анализ. Положения элементарного счисления, например 2 x 2 = 4, – казалось бы, самые «очевидные» – с аналитической точки зрения оказываются проблемами, решение которых при помощи выводов из теории множеств в отдельных своих частях вообще еще не удалось; Платону и его времени все это показалось бы явным сумасбродством и служило бы доказательством полного отсутствия математической одаренности.