Математическое «абсолютное» и тем самым совершенно не античное пространство (чего не решались заметить математики в почтительном страхе перед эллинской традицией) было с самого начала не шаткой пространственностъю ежедневных впечатлений, ходкой живописи или обманчиво однозначной и точной априорной наглядностью Канта, но чистой абстрактностью, идеальным и невыполнимым постулатом души, которая все меньше удовлетворялась чувственным как средством выражения и наконец решительно от него отвернулась. Проснулся внутренний взор.
Теперь только глубоким мыслителям должно было стать ясным, что Эвклидова геометрия, единственная и правильная для наивного взгляда всех времен, при рассмотрении с этой высшей точки зрения оказывается не более чем гипотезой, исключительная значимость которой по отношению к другим, притом совершенно лишенным наглядности видам геометрии никогда не может быть доказана, как это мы точно знаем со времени Гаусса, не говоря уже о пресловутом «согласии» с действительностью – этой догме профанов, опровергаемой каждым взглядом вдаль, где сходятся все параллели. Ядро этой геометрии – аксиома о параллельных Эвклида – оказывается утверждением, которое может быть заменено другими, именно что через точку к прямой можно провести две, много или ни одной параллельной; эти утверждения приводят к совершенно непротиворечивым трехмерным геометрическим системам, которые могут применяться в физике и особенно в астрономии и иногда даже предпочитаются Эвклидовым.
Уже простое требование неограниченности протяженного – которую со времени Римана и его теории неограниченных, но в силу их кривизны не бесконечных пространств можно отличить от бесконечности – противоречит собственному характеру всякой непосредственной наглядности, которая зависит от отражений света, то есть от материальных границ. Возможны, однако, такие абстрактные принципы полагания границы, которые в совершенно новом смысле преодолевают возможности оптической ограниченности. Для проницательного взора уже в картезианской геометрии лежит тенденция выхода за пределы трех измерений непосредственно переживаемогопространства как границ, вовсе не необходимых для символики чисел. И если начиная только с 1800 года представление многомерного пространства – было бы лучше заменить это слово «новым» – стало более широким основоположением для аналитического мышления, то первый шаг в этом направлении был сделан уже в тот момент, когда степени, вернее, логарифмы, освобожденные от их изначальных отношений к чувственно реализируемым плоскостям и телам – посредством применения иррациональных и комплексных показателей, – были введены в область функционального как объекты отношений совершенно общего характера. Тот, кто вообще может здесь ориентироваться, поймет, что переходом от а3 как естественного максимума к аn уже снимается безусловность пространства трех измерений.