Закат Европы (Шпенглер) - страница 75

После того как пространственный элемент точки потерял уже оптический характер отрезка координат в наглядно-представляемой системе и стал определяться как группа трех независимых чисел, – не могло быть больше препятствий к тому, чтобы заменить число 3 числом n. Произошло изменение самого понятия измерения: оно теперь уже не число меры, не оптические свойства точки в отношении к ее положению в системе, но неограниченное число измерений представляет здесь совершенно абстрактные свойства некоторой числовой группы. Эта числовая группа – из n независимых упорядоченных элементов – является картиной точки; она называется одной точкой. Логически отсюда развитое уравнение называется плоскостью, является картиной плоскости. Совокупность всех точек n измерений называется n-мерным пространством, В этом трансцендентном пространственном мире, который не стоит уже ни в каком отношении к чувственности, царят открываемые анализом отношения, которые находятся в полном согласии с результатами экспериментальной физики. Эта пространственность высшего порядка есть символ, который сполна оказывается достоянием западноевропейского духа. Только этот дух в этих формах должен был заклинать ставшее и протяженное посредством этого рода усвоения – вспомним о «табу», – заклинать чуждое, принуждать, следовательно, пытаться «познать» и понять. Только в этой сфере числового мышления, которая доступна всегда очень небольшому кругу людей – но то же самое можно сказать и по отношению к наиболее глубоким моментам нашей музыки, нашей живописи, нашей догматики, – получают характер чего-то действительного и такие образования, как система гиперкомплексных чисел (квартернионы векториального счисления), и, наконец, такой, совершенно непонятный знак, как ∞n. Следует ясно понять, что действительность не есть только чувственная действительность, что скорее душевное может сделать свои идеи действительными посредством образований, совершенно других, чем наглядные.

18.

Из этой замечательной интуиции символических пространств вытекает последний и заключительный взгляд всей западноевропейской математики – расширение и одухотворение функциональной теории в теорию групп. Группы суть множества или совокупности однородных математических образований, например всех дифференциальных уравнений некоторого определенного типа, множества, которые построены и упорядочены по аналогии с дедекиндовским числовым корпусом. Дело идет, таким образом, о мире совершенно новых чисел, которые и для внутреннего глаза посвященного все же не вполне свободны от известной доли чувственности. Выдвигаются исследования известных элементов этих величайших по своей абстрактности формальных систем, которые инвариантны по отношению к одной-единственной группе операций – трансформаций системы, от действий в пределах которой они остаются независимыми. Общая задача этой математики получает, таким образом, следующую формулировку (по Клейну): «Пусть дано n-мерное многообразие («пространство») и группа трансформаций. Принадлежащие к многообразию образования должны быть исследованы в отношении таких свойств, которые не изменяются трансформациями группы».