Йога при остеопорозе (Фишмен, Солтонстолл) - страница 40


Рисунок 18. Фронтальный вид мышц головы (слева) и поясницы (справа), полученный путем МРТ. Мышцы головы крепятся преимущественно к лопаткам, ключицам и грудине. Использование рук для поднятия и удержания веса подвергает затылочные позвонки стимулирующей компрессии. То же касается мышц, связывающих между собой тела и поперечные отростки поясничных позвонков.


Еще один пример механорецепторов – остеоциты. Мы, как правило, не знаем, что наши кости сгибаются или скручиваются, однако многие исследования показывают, что именно так и происходит. Поднимаем мы что-то, несем, идем или наклоняемся – при любой нагрузке кости выгибаются и скручиваются. Когда внешние мембраны остеоцитов растягиваются или сжимаются, что происходит при сгибании или скручивании костей, они быстро реагируют на это воздействие, синтезируя новые белковые отростки, формирующие матрикс новой кости.

Остеоциты выпускают длинные щупальца, значительно увеличивая площадь своей поверхности и количество участков, чувствительных к изменению положения. Даже незначительное изменение формы внешней оболочки клетки меняет ее метаболизм и функцию. Чаще всего электрические разряды, возникающие при движении клеточной мембраны, создают достаточную энергию для изменения информационных молекул на ее внутренней поверхности. Эти молекулы продвигаются к ядру. Там они проникают в мембрану ядра и тем самым влияют на ядерные процессы. Подобно нейромедиаторам, эти крошечные курьеры с внешних границ клетки влияют на самый ее центр. Они изменяют ДНК, РНК и белки, впоследствии вырабатываемые клеткой, определяя, что именно эта клетка выпустит в организм. В случае остеоцитов этот процесс приводит к синтезу костеобразующего белка, который затем выделяется клеткой в костный матрикс, окружая его. Матрикс притягивает к себе кальций и другие минералы, укрепляющие кость, после чего подавляет движение мембран остеоцитов. Это делает кость более жесткой и устойчивой к сгибанию, а следовательно, ослабляет стимуляцию, приводящую к образованию новой костной ткани. Этот процесс является биохимической основой закона Вольфа.


Рисунок 19. Деформация стенки клетки создает электрический разряд, инициирующий химическую реакцию с образованием специфических молекул на внутренней поверхности стенки. Эти молекулярные сигналы расходятся по всей клетке и достигают ее ядра. Ядро реагирует преобразованием новой группы ДНК в РНК, что приводит к синтезу белков. Эти белки выделяются из клетки в костный матрикс, притягивая минералы, укрепляющие кость именно в том месте, куда пришлась нагрузка, сокращая дальнейшую деформацию.