Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса (Ливио) - страница 103

Пространство не есть эмпирическое понятие, выводимое из внешнего опыта… Пространство есть необходимое априорное представление, лежащее в основе всех внешних созерцаний… На этой априорной необходимости основывается аподиктическая достоверность всех геометрических основоположений и возможность их априорных построений. Если бы это представление о пространстве было a posteriori приобретенным понятием, почерпнутым из общего внешнего опыта, то первые основоположения математического определения были бы только восприятием. Следовательно, на них была бы печать случайности, свойственной восприятию, и суждение, что между двумя точками возможна лишь одна прямая линия, не было бы необходимым; всякий раз этому учил бы нас опыт (пер. Н. Лосского).

Проще говоря, по Канту, если мы воспринимаем какой-то предмет, этот предмет непременно пространственный и евклидовский.

Идеи Юма и Канта выдвинули на первый план два разных, но одинаково важных аспекта, традиционно приписываемых евклидовой геометрии. Первое – утверждение, что евклидова геометрия дает единственно возможное точное описание физического пространства. Второе – отождествление евклидовой геометрии с жесткой, не подлежащей сомнению и непогрешимой дедуктивной структурой. В совокупности эти два предполагаемых качества предоставляли математикам, физикам и философам неоспоримые доказательства, что существуют незыблемые и конкретные истины, описывающие вселенную. До XIX века подобные утверждения воспринимались как данность. Но верны ли они на самом деле?

Основы евклидовой геометрии заложил греческий математик Евклид Александрийский примерно в 300 году до нашей эры. Он создал монументальный тринадцатитомный труд под названием «Начала», где попытался воздвигнуть геометрию на хорошо определенной логической основе. Начал он с девяти аксиом, которые, как предполагалось, несомненно истинны, и четырех постулатов, а затем на основе этих аксиом и постулатов исключительно логическими рассуждениями доказал огромное количество теорем.

Первые четыре постулата Евклида крайне просты и на удивление лаконичны[100]. Первый из них, к примеру, гласит, что «от всякой точки до всякой точки можно провести прямую линию» (здесь и далее цитаты из «Начал» Евклида даны в пер. Д. Мордухай-Болтовского). Четвертый – что «все прямые углы равны между собой». А вот пятый постулат – «постулат о параллельности» – сформулирован уже сложнее и значительно менее очевиден: «Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то эти две прямые, продолженные неограниченно, встретятся с той стороны, где углы меньше двух прямых». На рис. 39 приведен чертеж, иллюстрирующий этот постулат. В истинности этого утверждения никто не сомневался, однако ему явно не хватает краткости и убедительности остальных постулатов. Все указывает на то, что пятый постулат не очень нравился и самому Евклиду: он не прибегает к нему при доказательстве первых двадцати восьми теорем в «Началах»