Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса (Ливио) - страница 113

+ ВС = АС, которая появляется в любом учебнике по геометрии при разговоре о длинах отрезков (рис. 46, а). Но тут Грассман заметил одну интересную подробность. Он обнаружил, что эта формула остается верной независимо от порядка точек А, В и С, если не просто толковать АВ, ВС и АС как длины, а приписывать им «направление», например, ВА = —АВ. Скажем, если С лежит между А и В (как на рис. 46, b), то АВ = АС + СВ, но поскольку СВ = —ВС, обнаруживаем, что АВ = АС – ВС и первоначальная формула АВ + ВС = АС восстанавливается, если просто прибавить к обеим частям ВС.

Это само по себе довольно занятно, однако расширение Грассмана таило в себе и новые сюрпризы. Обратите внимание, что если бы мы имели дело не с геометрией, а с алгеброй, то выражение вроде АВ обычно означало бы произведение А × В. В таком случае предположение Грассмана, что ВА = —АВ, нарушает один из священных законов арифметики – что от перемены мест множителей произведение не меняется. Грассман вполне отдавал себе отчет в такой неприятной вероятности и изобрел новую непротиворечивую алгебру – так называемую внешнюю алгебру, – которая позволяла существовать нескольким операциям умножения и одновременно могла иметь дело с геометрией с любым числом измерений.

К 1860 годам n-мерные геометрии плодились, как грибы после дождя[112]. Мало того, что революционная лекция Римана сделала из пространств любой кривизны и с произвольным количеством измерений фундаментальную область исследований, в развитие этой области внесли существенный вклад и другие математики, например англичане Артур Кэли и Джеймс Сильвестр, а также швейцарец Людвиг Шлефли.

У математиков появилось ощущение свободы от многовековых оков, привязывавших их к понятиям числа и пространства. Исторически сложилось, что к этим оковам было принято относиться столь серьезно, что уже в XVIII веке весьма плодовитый швейцарско-российский математик Леонард Эйлер (1707–1783) заметил, что «математика в целом – наука о количестве или наука, которая изучает способы измерить количество». Ветер перемен повеял только в XIX веке.

Все началось с введения абстрактных геометрических пространств и понятия бесконечности (и в геометрии, и в теории множеств), которые до неузнаваемости размыли представление о «количестве» и «измерении». Затем стали стремительно множиться исследования математических абстракций, и это помогло математике еще сильнее дистанцироваться от физической реальности, вдохнув при этом жизнь и «существование» в сами абстракции.

Вот какой «декларацией независимости