Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса (Ливио) - страница 130

[134]. Легко убедиться, что это утверждение истинно, если набор X не бесконечен. Например, если у нас сто коробок и в каждой лежит по крайней мере по одному стеклянному шарику, можно запросто взять по шарику из каждой коробки и сформировать новое множество Y, в которое войдут сто стеклянных шариков. В таком случае нам и особой аксиомы не нужно – мы можем доказать, что такой выбор возможен. Это утверждение верно и для бесконечных наборов Х, если только мы можем точно указать, как именно мы делаем выбор. Представьте себе, например, бесконечный набор непустых множеств натуральных чисел. Членами этого набора могут быть множества вроде {2, 6, 7}, {1, 0}, {346, 5, 11, 1257}, {все натуральные числа от 381 до 10 457} и тому подобные. В каждом множестве натуральных чисел всегда есть одно самое маленькое число. Поэтому наш выбор вполне можно однозначно описать следующим образом: «Из каждого множества мы выбираем наименьший элемент». В таком случае опять же можно обойтись без аксиомы выбора. Сложности возникают с бесконечными наборами в тех случаях, когда мы не можем определить способ выбора. В таких случаях процесс выбора никогда не кончается, и существование множества, в котором содержится ровно по одному элементу из каждого члена набора X, становится вопросом веры.

Аксиома выбора с самого начала породила среди математиков серьезные споры. Поскольку она постулирует существование определенных математических объектов, то есть «выборов», не обеспечивая никаких сколько-нибудь осязаемых примеров таких объектов, на это обрушился шквальный огонь, особенно со стороны приверженцев философской школы под названием конструктивизм (родственной интуиционизму). Конструктивисты считали, что все сущее должно быть также эксплицитно конструируемым. Другие математики также старались обойти аксиому выбора и при работе с теорией множеств Цермело-Френкеля ограничивались всеми остальными аксиомами.

Из-за явных недостатков аксиомы выбора математики задались вопросом: неужели нельзя либо доказать, либо опровергнуть эту аксиому через остальные аксиомы. История с пятым постулатом Евклида повторилась буквально. Ответить на этот вопрос отчасти удалось в конце 1930 годов. Это сделал Курт Гёдель (1906–1978), один из самых влиятельных логиков всех времен: он доказал, что аксиома выбора и другая знаменитая поправка, принадлежащая основателю теории множеств Георгу Кантору – континуум-гипотеза – не противоречат другим аксиомам Цермело-Френкеля[135]. То есть получалось, что ни ту ни другую гипотезу нельзя опровергнуть при помощи других стандартных аксиом теории множеств. Дополнительные доказательства получил в 1963 году американский математик Пол Коэн (1934–2007), скончавшийся, увы, в то время, когда я писал эту книгу. Он установил, что аксиома выбора и континуум-гипотеза полностью независимы друг от друга (Cohen 1966). Иначе говоря, аксиому выбора нельзя ни доказать, ни опровергнуть при помощи других аксиом. Подобным же образом и континуум-гипотезу нельзя ни доказать, ни опровергнуть при помощи тех же самых аксиом, даже если включить в них аксиому выбора.