Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса (Ливио) - страница 161

и свобода стимуляции. Первое – это способность создавать неслыханные ранее высказывания и понимать их[160]. Например, я легко могу создать предложение вроде «Плотину Гувера скотчем не починишь», и, хотя вам, скорее всего, эта фраза раньше не попадалась, вы без труда ее поймете. Свобода стимуляции – это власть выбирать, как реагировать на полученный стимул и реагировать ли на него вообще. Например, на вопрос, который ставит автор-исполнитель Кэрол Кинг в своей песне «Будешь ли ты и завтра любить меня?», можно ответить и «Откуда я знаю, не умру ли я до завтра», и «Конечно», и «Да я и сегодня тебя не люблю», и «Не больше, чем свою собачку», и «Честное слово, это ваша лучшая песня!», и даже «Интересно, кто в этом году выиграет Открытый чемпионат Австралии по теннису». Легко видеть, что многие эти черты (абстракция, отрицание, незамкнутость и способность развиваться) характерны и для математики[161].

Как я уже отмечал, Лакофф и Нуньес подчеркивают роль метафор в математике. Кроме того, когнитивисты настаивают, что все человеческие языки прибегают к метафорам для выражения практически чего угодно. Но и это еще не все: с 1957 года, когда знаменитый лингвист Ноам Хомски опубликовал свою революционную книгу «Синтаксические структуры» (Noam Chomsky, «Syntactic Structures»), многие лингвисты занялись так называемой универсальной грамматикой – общими принципами, которые управляют всеми языками[162]. Иначе говоря, то, что кажется на первый взгляд вавилонским разнообразием языков, на самом деле обладает неожиданным структурным сходством. Вдумайтесь – ведь иначе невозможно было бы составить словари для перевода с одного языка на другой!

Вероятно, вас до сих пор удивляет, что математика такая однородная – и по тематике, и по системе условных обозначений. Особенно интересна первая часть этого вопроса. Большинство математиков согласны, что математика в известном нам виде развилась из основных отраслей геометрии и арифметики, которые разрабатывали и применяли на практике древние вавилоняне, египтяне и греки. Однако так ли уж неизбежно, что математика должна отталкиваться именно от этих дисциплин?

Специалист по информатике Стивен Вольфрам в своей объемной книге «Наука нового типа» (Wolfram 2002) доказывает, что это не обязательно. В частности, Вольфрам демонстрирует, как можно развить математику совершенно нового типа, если начинать с простого набора правил (клеточных автоматов), которые действуют как короткие компьютерные программы. Эти клеточные автоматы можно (по крайней мере, в принципе) сделать основными инструментами моделирования природных явлений – вместо дифференциальных уравнений, которые главенствовали в естественных науках на протяжении трех столетий. Но что же тогда подтолкнуло древние цивилизации к открытию и изобретению именно нашей «марки» математики? Наверняка сказать невозможно, но, вероятно, это связано в основном с особенностями человеческой системы восприятия. Люди без труда замечают и распознают грани, прямые линии, плавные кривые. Скажем, обратите внимание, с какой точностью лично вы можете определить (на глаз), когда линия идеально прямая, и с какой легкостью отличаете правильную окружность от немного эллиптической. Вероятно, эти особенности восприятия оказали сильное влияние на то, как люди видят мир, и поэтому привели к созданию математики, основанной на дискретных объектах (арифметика) и на геометрических фигурах (евклидова геометрия).